Applied Computer Vision for Robotics

 5112012phippheise
Brian Uensen
Sebastian Kose

Feature descriptors : LII

- Features detected by Harris response
- How to compare détected features?
- Solútion feature descriptor

4 Extract information around the interest-point from the image

Feature descriptors

- Use raw pixel data for comparison/distance computation (e. g. SSD/SAD:)
- Make the descriptor robust to appearance variation (e.g, rotation and scaling)
- Make the detected features in images well distributed and only select reasonable subset to reduce computational complexity

Brute force comparison :

* Compare a feature in one mage with all the detected features of a secondimage

Brute force comparison :

* Compare a feature in one mage with all the detected features of a secondimage

Brute force comparison :

* Compare a feature in one mage with all the detected features of a secondimage

Brute force comparison :

* Compare a feature in one mage with all the detected features of a secondimage

Brute force comparison :

* Compare a feature in one mage with all the detected features of a secondimage

Brute force comparison :

* Compare a feature in one mage with all the detected features of a secondimage

Brute force comparison :

* Compare a feature in one mage with all the detected features of a secondimage

Brute force comparison :

* Compare a feature in one mage with all the detected features of a second image

Brute force comparison :

* Compare a feature in one mage with all the detected features of a secondimage

Brute force comparison :

* Compare a feature in one mage with all the detected features of a secondimage

- Keep the best match (or a list of the best matches see exercise sheet)

Homography DLT
 IIII

- Calculate the transformation that best describes the observed feature matches
- Given 2d matches $\{\times,=x\}$
- Calculate homography such that

$$
\mathrm{X}_{1}=|=| \mathrm{X}_{1}
$$

Homography DLT

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\left(a_{i}^{\prime}, y_{2}, w_{2}\right)
\end{aligned}
$$

Homography DLT

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0^{\top} & -w_{i}^{\prime} \mathbf{x}_{i}^{\top} & y_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
w_{i}^{\prime} \mathbf{x}_{i}^{\top} & 0^{\top} & -x_{i}^{\prime} \mathbf{x}_{i}^{\top}
\end{array}\right]\left(\begin{array}{l}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right)=\mathbf{0}}
\end{aligned}
$$

$$
A_{i} \mathrm{~h}=0
$$

Homography DLT

* Every match generates an. A
- Stack all A A together to get a matrix 4
- At least 4 matches are needed

- Special problem-solve using SVD

$$
S V D(A)-=\int V V
$$

- Solution is the last column of V

Homography DLT

- Current solution dependent on the scale of the points
- Normalization of the points needed
- Compute simiarity transform $\bar{\prime}$ for the points \mathbf{x}_{i} to a new set of points X^{2} with centroid $(0,0)$ and average distance $\sqrt{2}$ to the origin
- Do the same for the ponts x^{\prime}, giving the transformation T^{\prime}
- Compute the homography \bar{H} for the matches $\tilde{\mathbf{x}}_{i} \leftrightarrow \widetilde{\mathbf{x}}_{i}^{\prime}$
- Denormalize and get $H=T^{\prime}-1 \tilde{H} T$

Homography to pose

* Given the camera calibration and an estimate for the homograph find the rotation and translation of the planar template

$$
\begin{aligned}
& c=R_{1}+R_{2}, p=R_{1} \times R_{2}, d=c \times p \\
& R_{1}^{\prime}=\frac{1}{\sqrt{2}}\left(\frac{c}{\|c\|}, \frac{d}{\| \epsilon}, \mid d \|\right), R_{2}^{\prime}=\frac{1}{\| \sqrt{2}}\left(\frac{c}{\|c\|}-\frac{d}{\|d\|}\right) \\
& R_{3}=R_{1}^{\prime} \times R_{2}^{\prime}
\end{aligned}
$$

