Vorlesung Grundlagen der Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems Department of Informatics – I6 Technische Universität München

www6.in.tum.de lafrenz@in.tum.de 089-289-18136 Room 03.07.055

Wintersemester 2012/13

17.12.2012

Grundlagen der Künstlichen Intelligenz – Techniques in Artificial Intelligence

Chapter 10 (3rd ed.)

Classical Planning

R. Lafrenz

Wintersemester 2012/13

17.12.2012

Planning

- The Planning problem
- Planning with State-space search
- Partial-order planning
- Planning graphs
- Planning with propositional logic
- Analysis of planning approaches

What is **Planning**

- Generate sequences of actions to perform tasks and achieve objectives.
 - States, actions and goals
- Search for solution over abstract space of plans.
- Assists humans in practical applications
 - design and manufacturing
 - games
 - space exploration
 - Rescue operation (see also RoboCup rescue league)

Difficulty of real world problems

- Assume a problem-solving agent using some search method ...
 - Which actions are relevant?
 - Exhaustive search vs. backward search
 - What is a good heuristic functions?
 - Good estimate of the cost of the state?
 - Problem-dependent vs. -independent
 - How to decompose the problem?
 - Most real-world problems are *nearly* decomposable.

Planning language

- What is a good language?
 - Expressive enough to describe a wide variety of problems.
 - Restrictive enough to allow efficient algorithms to operate on it.
 - Planning algorithm should be able to take advantage of the logical structure of the problem.
- STRIPS, ADL, and PDDL

General language features

Representation of states

- Decompose the world in logical conditions and represent a state as a *conjunction of positive literals.*
 - Propositional literals: *Poor A Unknown*
 - First Order-literals (grounded and function-free): *At(Plane1, Melbourne)* ∧ *At(Plane2, Sydney)*
- Closed world assumption
- Representation of goals
 - Partially specified state and represented as a *conjunction* of *positive ground literals*
 - A goal is *satisfied* if the state contains all literals in goal.

General language features

- Representations of actions
 - Action = PRECOND + EFFECT

Action(Fly(p,from, to), PRECOND: At(p,from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to) EFFECT: ¬At(p,from) ∧ At(p,to))

= action schema (*p, from, to* need to be instantiated)

- Action name and parameter list
- Precondition (conj. of function-free literals)
- Effect (conj. of function-free literals)
- Add-list vs. delete-list in Effect

Language semantics?

How do actions affect states?

- An action is applicable in any state that satisfies the precondition.
- For FO action schema applicability involves a substitution θ for the variables in the PRECOND.
 At(P1,JFK) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(JFK) ∧ Airport(SFO)
 Satisfies : At(p,from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
 With θ ={p/P1,from/JFK,to/SFO}
 Thus the action is applicable.

Language semantics?

- The result of executing action a in state s is the state s'
 - s' is same as s except
 - Any positive literal *P* in the effect of *a* is added to *s*'
 - Any negative literal ¬P is removed from s'

At(P1,SF0) ∧ *At(P2,SF0)* ∧ *Plane(P1)* ∧ *Plane(P2)* ∧ *Airport(JFK)* ∧ *Airport(SF0)*

 STRIPS assumption: (avoids representational frame problem)

every literal NOT in the effect remains unchanged

Expressiveness and extensions

- STRIPS is simplified
 - Important limit: function-free literals
 - Allows for propositional representation
 - Closed-world assumption
- Function symbols lead to infinitely many states and actions
- Open-world extension:Action Description language (ADL) Action(Fly(p:Plane, from: Airport, to: Airport), PRECOND: At(p,from) ∧ (from ≠ to) EFFECT: ¬At(p,from) ∧ At(p,to))

Standardization : Planning domain definition language (PDDL)

- Delevoped for 1998/2000 International Planning Competition (IPC)

Example: air cargo transport

Init(At(C1, SFO) \land At(C2,JFK) \land At(P1,SFO) \land At(P2,JFK) \land Cargo(C1) \land $Cargo(C2) \land Plane(P1) \land Plane(P2) \land Airport(JFK) \land Airport(SFO))$ Goal(At(C1,JFK) ∧ At(C2,SFO)) Action(Load(c,p,a) PRECOND: At(c,a) \(\triangle At(p,a) \(\triangle Cargo(c) \(\triangle Plane(p) \(\triangle Airport(a) \) EFFECT: $\neg At(c,a) \land In(c,p)$) Action(Unload(c,p,a) PRECOND: $In(c,p) \land At(p,a) \land Cargo(c) \land Plane(p) \land Airport(a)$ EFFECT: $At(c,a) \land \neg In(c,p)$) Action(Fly(p,from,to) PRECOND: At(p,from) Plane(p) Airport(from) Airport(to) EFFECT: $\neg At(p, from) \land At(p, to))$

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Load(C2,P2,JFK), Fly(P2,JFK,SFO)]

Example: Spare tire problem

```
Init(At(Flat, Axle) \wedge At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare,Trunk)
   PRECOND: At(Spare, Trunk)
   EFFECT: ¬At(Spare, Trunk) ∧ At(Spare, Ground))
Action(Remove(Flat,Axle)
   PRECOND: At(Flat,Axle)
   EFFECT: ¬At(Flat,Axle) ∧ At(Flat,Ground))
Action(PutOn(Spare,Axle)
   PRECOND: At(Spare, Groundp) A-At(Flat, Axle)
   EFFECT: At(Spare,Axle) ~ ¬At(Spare,Ground))
Action(LeaveOvernight(),
                                PRECOND: <none>
   EFFECT: \neg At(Spare,Ground) \land \neg At(Spare,Axle) \land \neg At(Spare,trunk)
   \land \neg At(Flat,Ground) \land \neg At(Flat,Axle))
```

13 This example goes beyond STRIPS: negative literal in pre-condition

Example: Blocks world

 $\begin{array}{l} \textit{Init}(\textit{On}(A, \textit{Table}) \land \textit{On}(B, \textit{Table}) \land \textit{On}(C, A) \land \textit{Block}(A) \land \textit{Block}(B) \land \\ \textit{Block}(C) \land \textit{Clear}(B) \land \textit{Clear}(C)) \\ \textit{Goal}(\textit{On}(A, B) \land \textit{On}(B, C)) \\ \textit{Action}(\textit{Move}(b, x, y)) \\ \textit{PRECOND: } \textit{On}(b, x) \land \textit{Clear}(b) \land \textit{Clear}(y) \land \textit{Block}(b) \land (b \neq x) \land (b \neq y) \\ \land (x \neq y) \\ \textit{EFFECT: } \textit{On}(b, y) \land \textit{Clear}(x) \land \neg \textit{On}(b, x) \land \neg \textit{Clear}(y)) \\ \textit{Action}(\textit{MoveToTable}(b, x)) \\ \textit{PRECOND: } \textit{On}(b, x) \land \textit{Clear}(b) \land \textit{Block}(b) \land (b \neq x) \\ \textit{EFFECT: } \textit{On}(b, x) \land \textit{Clear}(b) \land \textit{Block}(b) \land (b \neq x) \\ \textit{EFFECT: } \textit{On}(b, x) \land \textit{Clear}(x) \land \neg \textit{On}(b, x)) \end{array}$

Planning with state-space search

- Both forward and backward search possible
- Progression planners
 - forward state-space search
 - Consider the effect of all possible actions in a given state
- Regression planners
 - backward state-space search
 - To achieve a goal, what must have been true in the previous state.

Progression and regression

Progression algorithm

- Formulation as state-space search problem:
 - Initial state = initial state of the planning problem
 - Literals not appearing are false
 - Actions = those whose preconditions are satisfied
 - Add positive effects, delete negative
 - Goal test = does the state satisfy the goal
 - Step cost = each action costs 1
- No functions ... any graph search that is complete is a complete planning algorithm.
- Inefficient: (1) irrelevant action problem (2) good heuristic required for efficient search

Regression algorithm

- How to determine predecessors?
 - What are the states from which applying a given action leads to the goal?

Goal state = $At(C1, B) \land At(C2, B) \land ... \land At(C20, B)$ Relevant action for first conjunct: Unload(C1, p, B)

Works only if pre-conditions are satisfied. Previous state= $In(C1, p) \land At(p, B) \land At(C2, B) \land \dots \land At(C20, B)$

Subgoal At(C1,B) should not be present in this state.

- Actions must not undo desired literals (consistent)
- Main advantage: only relevant actions are considered.
 - Often much lower branching factor than forward search.

Regression algorithm

- General process for predecessor construction
 - Give a goal description G
 - Let A be an action that is relevant and consistent
 - The predecessors is as follows:
 - Any positive effects of A that appear in G are deleted.
 - Each precondition literal of A is added , unless it already appears.
- Any standard search algorithm can be added to perform the search.
- Termination when predecessor satisfied by initial state.
 - In FO case, satisfaction might require a substitution.

Heuristics for state-space search

- Neither progression or regression are very efficient without a good heuristic.
 - How many actions are needed to achieve the goal?
 - Exact solution is NP hard, find a good estimate
- Approaches to find admissible heuristics: Find optimal solution to relaxed problems
 - Heuristic: Remove all preconditions from actions
 - Heuristic: Ignore Delete-List
 - Use the subgoal independence assumption:

The cost of solving a conjunction of subgoals is approximated by the sum of the costs of solving the subproblems independently.

Partial-order planning

- Progression and regression planning are totally ordered plan search forms.
 - They cannot take advantage of problem decomposition.
 - Decisions must be made on how to sequence actions on all the subproblems
- Least commitment strategy:
 - Delay choice during search

Shoe example

Goal(RightShoeOn LeftShoeOn) Init() Action(RightShoe, PRECOND: RightSockOn EFFECT: RightShoeOn) Action(RightSock, PRECOND: <none> EFFECT: RightSockOn) Action(LeftShoe, PRECOND: LeftSockOn EFFECT: LeftShoeOn) Action(LeftSock, PRECOND: <none> EFFECT: LeftSockOn)

Planner: combine two action sequences (1)leftsock, leftshoe (2)rightsock, rightshoe

Partial-order planning

 Any planning algorithm that can place two actions into a plan without which comes first is a Partially Ordered Plan.

Partial-order planning as a search problem

- States are (mostly unfinished) plans.
 - The empty plan contains only start and finish actions.
- Each plan has 4 components:
 - 1. A set of actions (steps of the plan)
 - 2. A set of ordering constraints: A < B
 - Cycles represent cAntradictionB
 - 3. A set of causal links
 - The plan may not be extended by adding a new action C that conflicts with the causal link. (if the effect of C is ¬p and if C could come after A and before B)
 - 4. A set of open preconditions.
 - If precondition is not achieved by action in the plan.

Partial-order planning as a search problem

- A plan is *consistent* iff there are no cycles in the ordering constraints and no conflicts with the causal links.
- A consistent plan with no open preconditions is a *solution*.
- A partial order plan is executed by repeatedly choosing any of the possible next actions.
 - This flexibility is a benefit in non-cooperative environments.

Solving Partial-order planning

Assume propositional planning problems:

- The initial plan contains Start and Finish, the ordering constraint Start < Finish, no causal links, all the preconditions in Finish are open.</p>
- Successor function :
 - picks one open precondition *p* on an action *B* and
 - generates a successor plan for every possible consistent way of choosing action A that achieves p.
- Test goal

Enforcing consistency

When generating successor plan:

- The causal link A--p->B and the ordering constraing A < B is added to the plan.
 - If A is new also add start < A and A < B to the plan
- Resolve conflicts between new causal link and all existing actions
- Resolve conflicts between action A (if new) and all existing causal links.

Process summary

- Operators on partial plans
 - Add link from existing plan to open precondition.
 - Add a step to fulfill an open condition.
 - Order one step w.r.t another to remove possible conflicts
- Gradually move from incomplete/vague plans to complete/correct plans
- Backtrack if an open condition is unachievable or if a conflict is unresolvable.

Example: Spare tire problem

```
Init(At(Flat, Axle) \wedge At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare,Trunk)
   PRECOND: At(Spare, Trunk)
   EFFECT: ¬At(Spare,Trunk) ∧ At(Spare,Ground))
Action(Remove(Flat,Axle)
   PRECOND: At(Flat,Axle)
   EFFECT: ¬At(Flat,Axle) ∧ At(Flat,Ground))
Action(PutOn(Spare,Axle)
   PRECOND: At(Spare,Groundp) ~¬At(Flat,Axle)
   EFFECT: At(Spare,Axle) ~ ¬Ar(Spare,Ground))
Action(LeaveOvernight
   PRECOND:
   EFFECT: \neg At(Spare,Ground) \land \neg At(Spare,Axle) \land \neg At(Spare,trunk)
   \land \neg At(Flat,Ground) \land \neg At(Flat,Axle))
```


 Intial plan: Start with EFFECTS and Finish with PRECOND.

- Intial plan: Start with EFFECTS and Finish with PRECOND.
- Pick an open precondition: At(Spare, Axle)
- Only PutOn(Spare, Axle) is applicable
- Add causal link: $PutOn(Spare, Axle) \xrightarrow{At(Spare, Axle)} Finish$
- Add constraint : PutOn(Spare, Axle) < Finish</p>

- Pick an open precondition: At(Spare, Ground)
- Only Remove(Spare, Trunk) is applicable
- Add causal link: $Remove(Spare,Trunk) \xrightarrow{At(Spare,Ground)} PutOn(Spare,Axle)$
- Add constraint : Remove(Spare, Trunk) < PutOn(Spare, Axle)</p>

- Pick an open precondition: At(Spare, Ground)
- LeaveOverNight is applicable
- conflict: $Remove(Spare,Trunk) \xrightarrow{At(Spare,Ground)} PutOn(Spare,Axle)$
- To resolve, add constraint : LeaveOverNight < Remove(Spare, Trunk)

- Pick an open precondition: At(Spare, Ground)
- LeaveOverNight is applicable
- conflict: $Remove(Spare,Trunk) \xrightarrow{At(Spare,Ground)} PutOn(Spare,Axle)$
- To resolve, add constraint : LeaveOverNight < Remove(Spare, Trunk)
- Add causal link:

 $LeaveOverNight \xrightarrow{\neg At(Spare,Ground)} PutOn(Spare,Axle)$

- Pick an open precondition: At(Spare, Trunk)
- Only Start is applicable
- Add causal link: $Start \xrightarrow{At(Spare,Trunk)} Remove(Spare,Trunk)$
- Conflict: of causal link with effect At(Spare, Trunk) in LeaveOverNight
 - No re-ordering solution possible.
- backtrack

- Remove LeaveOverNight, Remove(Spare, Trunk) and causal links
- Repeat step with *Remove(Spare,Trunk)*
- Add also Remove(Flat, Axle) and finish

Some details ...

- What happens when a first-order representation that includes variables is used?
 - Complicates the process of detecting and resolving conflicts.
 - Can be resolved by introducing inequality constraints.
- CSP's most-constrained-variable constraint can be used for planning algorithms to select a PRECOND.

Planning graphs

- Used to achieve better heuristic estimates.
 - A solution can also directly extracted using GRAPHPLAN.
- Consists of a sequence of levels that correspond to time steps in the plan.
 - Level 0 is the initial state.
 - Each level consists of a set of literals and a set of actions.
 - Literals = all those that could be true at that time step, depending upon the actions executed at the preceding time step.
 - Actions = all those actions that could have their preconditions satisfied at that time step, depending on which of the literals actually hold.

Planning graphs

- "Could"?
 - Records only a restricted subset of possible negative interactions among actions.
- They work only for propositional problems.
- Example:

Init(Have(Cake)) Goal(Have(Cake) ^ Eaten(Cake)) Action(Eat(Cake), PRECOND: Have(Cake) EFFECT: ¬Have(Cake) ^ Eaten(Cake)) Action(Bake(Cake), PRECOND: ¬ Have(Cake) EFFECT: Have(Cake))

Cake example

- Start at level S0 and determine action level A0 and next level S1.
 - A0 >> all actions whose preconditions are satisfied in the previous level.
 - Connect precond and effect of actions S0 --> S1
 - Inaction is represented by persistence actions.
- Level A0 contains the actions that could occur
 - Conflicts between actions are represented by *mutex* links

Cake example

- Level S1 contains all literals that could result from picking any subset of actions in A0
 - Conflicts between literals that can not occur together are represented by mutex links.
 - S1 defines multiple states and the mutex links are the constraints that define this set of states.
- Continue until two consecutive levels are identical: leveled off
 - Or contain the same amount of literals (explanation follows later)

Cake example

- A mutex relation holds between **two actions** when:
 - Inconsistent effects: one action negates the effect of another.
 - Interference: one of the effects of one action is the negation of a precondition of the other.
 - Competing needs: one of the preconditions of one action is mutually exclusive with the precondition of the other.
- A mutex relation holds between two literals when (*inconsistent* support):
 - If one is the negation of the other OR
- 42 if each possible action pair that could achieve the literals is mutex.

PG and heuristic estimation

PGs provide information about the problem

- A literal that does not appear in the final level of the graph cannot be achieved by any plan.
 - Useful for backward search (cost = inf).
- Level of appearance can be used as cost estimate of achieving any goal literals = *level cost*.
- Small problem: several actions can occur
 - Restrict to one action using serial PG (add mutex links between every pair of actions, except persistence actions).
- Max-level, sum-level and set-level heuristics.
 PG is a relaxed problem.

The GRAPHPLAN Algorithm

How to extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure graph ← INITIAL-PLANNING-GRAPH(problem) goals ← GOALS[problem] loop do if goals all non-mutex in last level of graph then do solution ← EXTRACT-SOLUTION(graph, goals, LENGTH(graph)) if solution ≠ failure then return solution else if NO-SOLUTION-POSSIBLE(graph) then return failure

 $graph \leftarrow \mathsf{EXPAND}$ -GRAPH(graph, problem)

