Vorlesung Grundlagen der

Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems

Department of Informatics – I6

Technische Universität München

www6.in.tum.de

lafrenz@in.tum.de

089-289-18136

Room 03.07.055

Grundlagen der Künstlichen Intelligenz – Techniques in Artificial Intelligence

Chapter 12

Knowledge representation

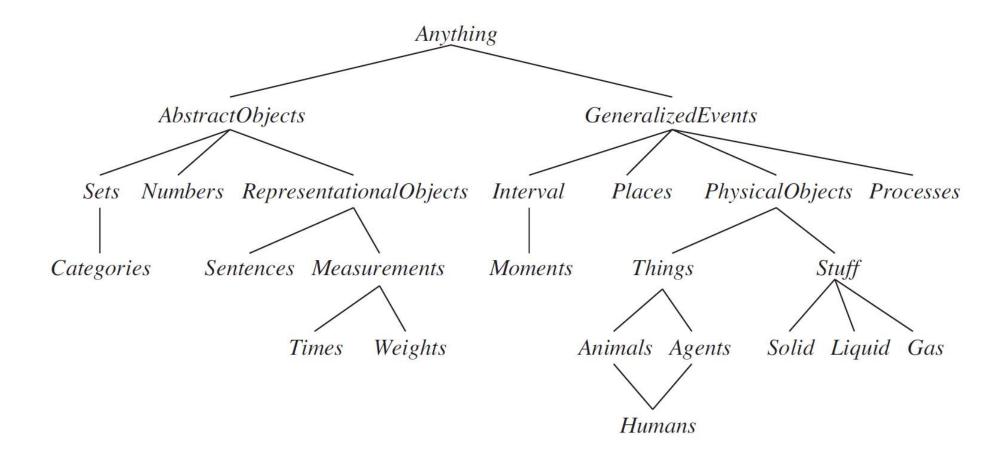
Outline

- Ontological engineering
- Categories and objects
- Actions, situations and events
- Mental events and mental objects
- The internet shopping world
- Reasoning systems for categories
- Reasoning with default information
- Truth maintenance systems

Ontological engineering

- How to create more general and flexible representations.
 - Concepts like actions, time, physical object and beliefs
 - Operates on a bigger scale than K.E.
- Define general framework of concepts
 - Upper ontology
- Limitations of logic representation
 - Red, green and yellow tomatoes: exceptions and uncertainty

The upper ontology of the world



Difference with special-purpose ontologies

- A general-purpose ontology should be applicable in more or less any special-purpose domain.
 - Add domain-specific axioms
- In any sufficiently demanding domain different areas of knowledge need to be unified.
 - Reasoning and problem solving could involve several areas simultaneously
- What do we need to express?

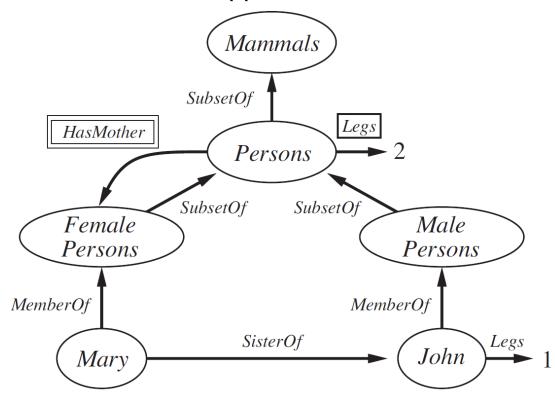
Categories, Measures, Composite objects, Time, Space, Change, Events, Processes, Physical Objects, Substances, Mental Objects, Beliefs

Categories and objects

- KR requires the organisation of objects into categories
 - Interaction at the level of the object
 - Reasoning at the level of categories
- Categories play a role in predictions about objects
 - Based on perceived properties
- Categories can be represented in two ways by FOL
 - Predicates: apple(x)
 - Reification of categories into objects: apples
- Category = set of its members

Category organization

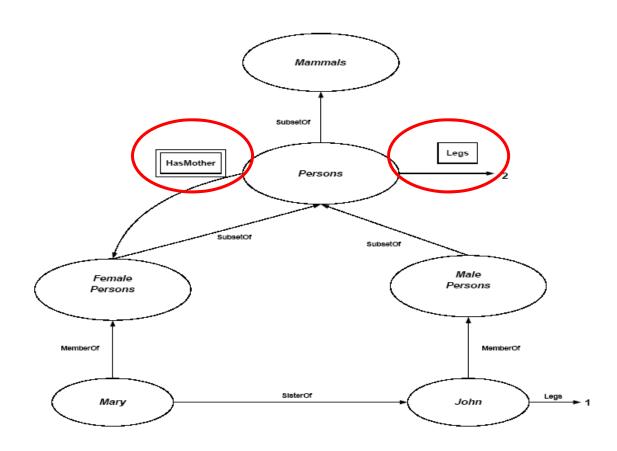
- Relation = inheritance:
 - All instance of food are edible, fruit is a subclass of food and apples is a subclass of fruit then an apple is edible.
- Defines a taxonomy



Semantic Networks

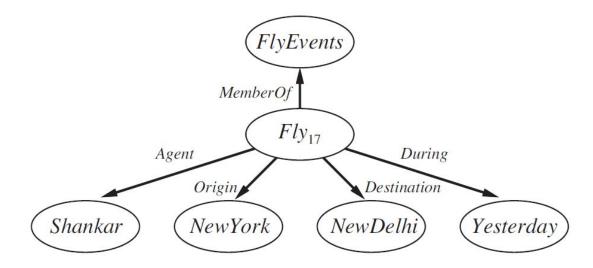
- Logic vs. semantic networks
- Many variations
 - All represent individual objects, categories of objects and relationships among objects.
- Allows for inheritance reasoning
 - Female persons inherit all properties from person.
 - Cfr. OO programming.
- Inference of inverse links
 - SisterOf vs. HasSister

Semantic network example



Semantic networks

- Drawbacks
 - Links can only assert binary relations
 - Can be resolved by reification of the proposition as an event



- Representation of default values
 - Enforced by the inheritance mechanism.

FOL and categories

- An object is a member of a category
 - MemberOf(BB₁₂,Basketballs)
- A category is a subclass of another category
 - SubsetOf(Basketballs,Balls)
- All members of a category have some properties
 - \forall x (MemberOf(x,Basketballs) ⇒ Round(x))
- All members of a category can be recognized by some properties
 - ∀ x (Orange(x) ∧ Round(x) ∧ Diameter(x)=9.5in ∧ MemberOf(x,Balls) ⇒ MemberOf(x,BasketBalls))
- A category as a whole has some properties
 - MemberOf(Dogs,DomesticatedSpecies)

Relations between categories

- Two or more categories are *disjoint* if they have no members in common:
 - Disjoint(s) \Leftrightarrow (\forall c₁,c₂ c₁ \in s \land c₂ \in s \land c₁ \neq c₂ \Rightarrow Intersection(c₁,c₂) ={})
 - Example; Disjoint({animals, vegetables})
- A set of categories s constitutes an exhaustive decomposition of a category c if all members of the set c are covered by categories in s:
 - E.D.(s,c) \Leftrightarrow (\forall i: i \in c $\Rightarrow \exists$ c₂: c₂ \in s \land i \in c₂)
 - Example: ExhaustiveDecomposition({Americans, Canadians, Mexicans},NorthAmericans).

Relations between categories

- A partition is a disjoint exhaustive decomposition:
 - Partition(s,c) \Leftrightarrow Disjoint(s) \land E.D.(s,c)
 - Example: Partition({Males,Females},Persons).
- Is ({Americans, Canadians, Mexicans}, North Americans) a partition?
- Categories can be defined by providing necessary and sufficient conditions for membership
 - \forall x Bachelor(x) \Leftrightarrow Male(x) \land Adult(x) \land Unmarried(x)

Natural kinds

- Many categories have no clear-cut definitions (chair, bush, book).
- Tomatoes: sometimes green, red, yellow, black.
 Mostly round.
- One solution: category Typical(Tomatoes).
 - \forall x: x ∈ Typical(Tomatoes) \Rightarrow Red(x) \land Spherical(x).
 - We can write down useful facts about categories without providing exact definitions.
- What about "bachelor"? Quine challenged the utility of the notion of strict definition. We might question a statement such as "the Pope is a bachelor".

Physical composition

- One object may be part of another:
 - PartOf(Bucharest,Romania)
 - PartOf(Romania, Eastern Europe)
 - PartOf(EasternEurope, Europe)
- The PartOf predicate is transitive (and irreflexive), so we can infer that PartOf(Bucharest, Europe)
- More generally:
 - \forall x PartOf(x,x)
 - \forall x,y,z PartOf(x,y) \land PartOf(y,z) \Rightarrow PartOf(x,z)
- Often characterized by structural relations among parts.

- E.g. Biped(a)
$$\Rightarrow$$
 $(\exists l_1, l_2, b)(Leg(l_1) \land Leg(l_2) \land Body(b) \land$
$$PartOf(l_1, a) \land PartOf(l_2, a) \land PartOf(b, a) \land$$

$$Attached(l_1, b) \land Attached(l_2, b) \land$$

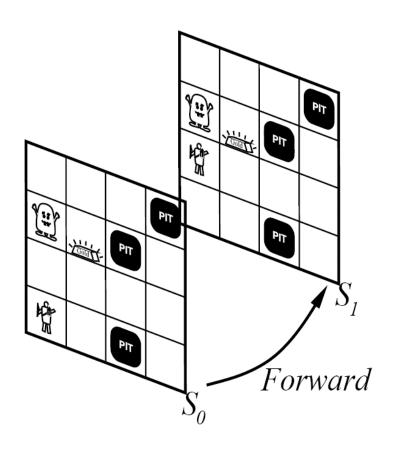
$$l_1 \neq l_2 \land (\forall l_3)(Leg(l_3) \Rightarrow (l_3 = l_1 \lor l_3 = l_2)))$$

Measurements

- Objects have height, mass, cost,
 Values that we assign to these are measures
- Combine Unit functions with a number: Length(L₁) = Inches(1.5) = Centimeters(3.81).
- Conversion between units:
 ∀ i Centimeters(2.54 x i)=Inches(i).
- Some measures have no scale: Beauty, Difficulty, etc.
 - Most important aspect of measures: is that they are orderable.
 - Don't care about the actual numbers. (An apple can have deliciousness .9 or .1.)

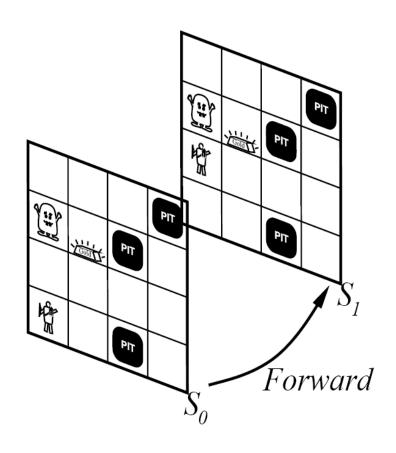


- Reasoning about outcome of actions is central to KB-agent.
- How can we keep track of location in FOL?
 - Remember the multiple copies in PL.
- Representing time by situations (states resulting from the execution of actions).
 - Situation calculus

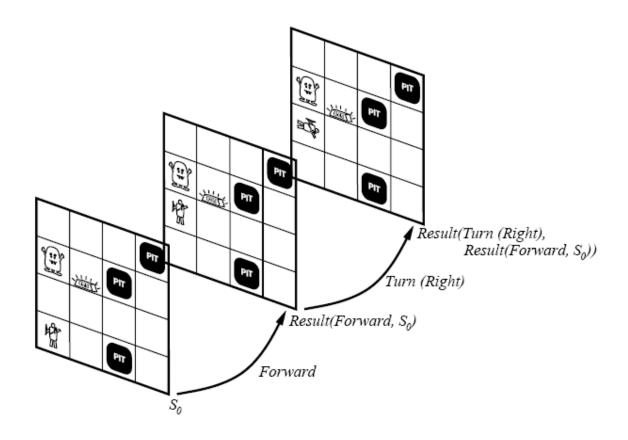


Situation calculus:

- Actions are logical terms
- Situations are logical terms consiting of
 - The initial situation I
 - All situations resulting from the action on I (=Result(a,s))
- Fluent are functions and predicates that vary from one situation to the next.
 - E.g. $\neg Holding(G_1, S_0)$
- Eternal predicates are also allowed
 - E.g. $Gold(G_1)$



- Results of action sequences are determined by the individual actions.
- Projection task: an SC agent should be able to deduce the outcome of a sequence of actions.
- Planning task: find a sequence that achieves a desirable effect



Describing change

- Simples Situation calculus requires two axioms to describe change:
 - Possibility axiom: when is it possible to do the action $At(Agent,x,s) \wedge Adjacent(x,y) \Rightarrow Poss(Go(x,y),s)$
 - Effect axiom: describe changes due to action
 Poss(Go(x,y),s) ⇒ At(Agent,y,Result(Go(x,y),s))
- What stays the same?
 - Frame problem: how to represent all things that stay the same?
 - Frame axiom: describe non-changes due to actions
 At(o,x,s) ∧ (o ≠ Agent) ∧ ¬Holding(o,s) ⇒ At(o,x,Result(Go(y,z),s))

Time relations and time logic

- To overcome limitations in the situation calculus, event calculus can be used.
 - E.g. predicate HoldsAt (fluent, time) describes that a specific sentence f is true at time t.

Time relations can be as follows:

Meet(i,j)	i j	Starts(i,j)	i
Before(i,j) After(j,i)	i j		j
11,101 (1,1)		Finishes(i,j)	i
During(i,j)	j j		j
Overlap(i,j)	į	Equals(i,j)	i
	j		j

Representational frame problem

- If there are F fluents and A actions then we need AF frame axioms to describe other objects are stationary unless they are held.
 - We write down the effect of each actions
- Solution; describe how each fluent changes over time
 - Successor-state axiom:

```
Pos(a,s) \Rightarrow (At(Agent,y,Result(a,s)) \Leftrightarrow (a = Go(x,y)) \lor (At(Agent,y,s) \land a \neq Go(y,z))
```

- Note that next state is completely specified by current state.
- Each action effect is mentioned only once.

Other problems

- How to deal with secondary (implicit) effects?
 - If the agent is carrying the gold and the agent moves then the gold moves too.
 - Ramification problem
- How to decide EFFICIENTLY whether fluents hold in the future?
 - Inferential frame problem.
- Extensions:
 - Event calculus (when actions have a duration)
 - Process categories

Mental events and objects

- So far, KB agents can have beliefs and deduce new beliefs
- What about knowledge about beliefs? What about knowledge about the inference process?
 - Requires a model of the mental objects in someone's head and the processes that manipulate these objects.
- Relationships between agents and mental objects: believes, knows, wants, ...
 - Believes(Lois,Flies(Superman)) with Flies(Superman) being a function ...
 a candidate for a mental object (reification).
 - Agent can now reason about the beliefs of agents.

The internet shopping world

- A Knowledge Engineering example
- An agent that helps a buyer to find product offers on the internet.
 - IN = product description (precise or ¬precise)
 - OUT = list of webpages that offer the product for sale.
- Environment = WWW
- Percepts = web pages (character strings)
 - Extracting useful information required.

The internet shopping world

Find relevant product offers

RelevantOffer(page,url,query) ⇔ Relevant(page, url, query) ∧ Offer(page)

- Write axioms to define Offer(x)
- Find relevant pages: Relevant(x,y,z) ?
 - Start from an initial set of stores.
 - What is a relevant category?
 - What are relevant connected pages?
- Require rich category vocabulary.
 - Synonymy and ambiguity
- How to retrieve pages: GetPage(url)?
 - Procedural attachment
- Compare offers (information extraction).

Reasoning systems for categories

- How to organise and reason with categories?
 - Semantic networks
 - Visualize knowledge-base
 - Efficient algorithms for category membership inference
 - Description logics
 - Formal language for constructing and combining category definitions
 - Efficient algorithms to decide subset and superset relationships between categories.

Description logics

- Are designed to describe defintions and properties about categories
 - A formalization of semantic networks
- Principal inference task is
 - Subsumption: checking if one category is the subset of another by comparing their definitions
 - Classification: checking whether an object belongs to a category.
 - Consistency: whether the category membership criteria are logically satisfiable.

Reasoning with Default Information

- "The following courses are offered: CS101, CS102, CS106, EE101"
 - Four (data base semantics)
 - Assume that this information is complete (not asserted ground atomic sentences are false)
 - = CLOSED WORLD ASSUMPTION
 - Assume that distinct names refer to distinct objects
 - **= UNIQUE NAMES ASSUMPTION**
 - Between one and infinity (logic)
 - Does not make these assumptions
 - Requires completion.

Truth maintenance systems

- Many of the inferences have default status rather than being absolutely certain
 - Inferred facts can be wrong and need to be retracted = BELIEF REVISION.
 - Assume KB contains sentence P and we want to execute TELL(KB, ¬P)
 - To avoid contradiction: RETRACT(KB,P)
 - But what about sentences inferred from P?
- Truth maintenance systems are designed to handle these complications.

Summary

- Knowledge representation is crucial for efficient reasoning
- Ontologies are a widely used way for representing knowledge
- Upper ontology to describe main concepts and object classes of the world
- Individual ontologies for specific domains needed
- Different ways of reasoning
 - Navigation in semantic networks
 - Formal reasoning using logical representations
- Problem: Handling of default values

