Vorlesung Grundlagen der Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems Department of Informatics – I6 Technische Universität München

www6.in.tum.de lafrenz@in.tum.de 089-289-18136 Room 03.07.055

Wintersemester 2012/13

11.1.2013

Grundlagen der Künstlichen Intelligenz – Techniques in Artificial Intelligence

Chapter 13

Reasoning under Uncertainty – Probability Theory

R. Lafrenz

Wintersemester 2012/13

11.1.2013

Outline

- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes' Rule

Uncertainty

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time?

Problems:

- 1. partial observability (road state, other drivers' plans, etc.
- 2. noisy sensors (traffic reports)
- 3. uncertainty in action outcomes (flat tire, etc.)
- 4. immense complexity of modeling and predicting traffic

Hence a purely logical approach either

- 1. risks falsehood: " A_{25} will get me there on time", or
- 2. leads to conclusions that are too weak for decision making:
- "A₂₅ will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."
- (A₁₄₄₀ might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)

Methods for handling uncertainty

- Default or nonmonotonic logic:
 - Assume my car does not have a flat tire
 - Assume A_{25} works unless contradicted by evidence
- Issues: What assumptions are reasonable? How to handle contradiction?
- Rules with fudge factors:
 - $A_{25} \rightarrow_{0.3}$ get there on time
 - Sprinkler $|\rightarrow 0.99$ WetGrass
 - WetGrass $|\rightarrow _{0.7}$ Rain
- Issues: Problems with combination, e.g., Sprinkler causes Rain??
- Probability
 - Model agent's degree of belief
 - Given the available evidence,
 - A_{25} will get me there on time with probability 0.04

Probability

Probabilistic assertions summarize effects of

- laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack of relevant facts, initial conditions, etc.

Subjective probability:

Probabilities relate propositions to agent's own state of knowledge

e.g., $P(A_{25} | no reported accidents) = 0.06$

These are not assertions about the world

Probabilities of propositions change with new evidence:

e.g., $P(A_{25} | no reported accidents, 5 a.m.) = 0.15$

Making decisions under uncertainty

Suppose I believe the following:

- $P(A_{25} \text{ gets me there on time } | ...) = 0.04$
- $P(A_{90} \text{ gets me there on time } | ...) = 0.70$
- $P(A_{120} \text{ gets me there on time } | ...) = 0.95$

 $P(A_{1440} \text{ gets me there on time } | \dots) = 0.9999$

• Which action to choose?

Depends on my preferences for missing flight vs. time spent waiting, etc.

- Utility theory is used to represent and infer preferences
- Decision theory = probability theory + utility theory

Syntax

- Basic element: random variable
- Similar to propositional logic: possible worlds defined by assignment of values to random variables.
- Boolean random variables
- e.g., Cavity (do I have a cavity?)
- Discrete random variables
- e.g., Weather is one of <sunny,rainy,cloudy,snow>
- Domain values must be exhaustive and mutually exclusive
- Elementary proposition constructed by assignment of a value to a
- random variable: e.g., Weather = sunny, Cavity = false
- (abbreviated as ¬*cavity*)
- Complex propositions formed from elementary propositions and standard logical connectives e.g., Weather = sunny v Cavity = false

Syntax

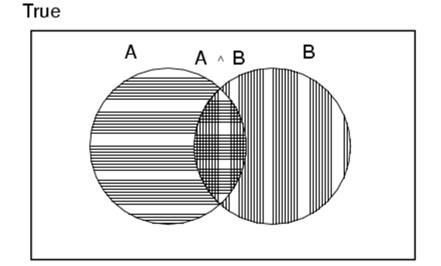
- Atomic event: A complete specification of the state of the world about which the agent is uncertain
- E.g., if the world consists of only two Boolean variables Cavity and Toothache, then there are 4 distinct atomic events:

Cavity = false \land Toothache = false Cavity = false \land Toothache = true Cavity = true \land Toothache = false Cavity = true \land Toothache = true

Atomic events are mutually exclusive and exhaustive

Axioms of probability

- For any propositions A, B
 - $0 \le \mathsf{P}(A) \le 1$
 - P(true) = 1 and P(false) = 0
 - $P(A \lor B) = P(A) + P(B) P(A \land B)$



Prior probability

- Prior or unconditional probabilities of propositions
- e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief prior to arrival of any (new) evidence
- Probability distribution gives values for all possible assignments:

P(*Weather*) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)

 Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables

 $P(Weather, Cavity) = a 4 \times 2$ matrix of values:

Weather =	sunny	rainy	cloudy	snow
<i>Cavity</i> = true	0.144	0.02	0.016	0.02
Cavity = false	0.576	0.08	0.064	0.08

Every question about a domain can be answered by the joint distribution

Conditional probability

Conditional or posterior probabilities

e.g., P(*cavity* | *toothache*) = 0.8 i.e., given that *toothache* is all I know

(Notation for conditional distributions:

P(*Cavity* | *Toothache*) = 2-element vector of 2-element vectors)

If we know more, e.g., *cavity* is also given, then we have

P(*cavity* | *toothache*,*cavity*) = 1

New evidence may be irrelevant, allowing simplification, e.g.,

P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8

• This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability

- Definition of conditional probability:
 P(a | b) = P(a ∧ b) / P(b) if P(b) > 0
- Product rule gives an alternative formulation:
 P(a \wedge b) = P(a | b) P(b) = P(b | a) P(a)
- A general version holds for whole distributions, e.g.,
 P(Weather, Cavity) = P(Weather | Cavity) P(Cavity)

(View as a set of 4×2 equations, not matrix mult.)

• Chain rule is derived by successive application of product rule:

$$\mathbf{P}(X_{1}, ..., X_{n}) = \mathbf{P}(X_{1}, ..., X_{n-1}) \mathbf{P}(X_{n} | X_{1}, ..., X_{n-1}) = \mathbf{P}(X_{1}, ..., X_{n-2}) \mathbf{P}(X_{n-1} | X_{1}, ..., X_{n-2}) \mathbf{P}(X_{n} | X_{1}, ..., X_{n-1}) = ... = \prod_{i=1}^{n} \mathbf{P}(X_{i} | X_{1}, ..., X_{i-1})$$

• Start with the joint probability distribution:

	toothache		⊐ toothache	
	catch	¬ catch	catch	\neg catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition φ, sum the atomic events where it is true: P(φ) = Σ_{ω:ω ⊧φ} P(ω)

• Start with the joint probability distribution:

	toothache		⊐ toothache	
	$catch \neg catch$		catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- For any proposition φ, sum the atomic events where it is true: P(φ) = Σ_{ω:ω ⊧φ} P(ω)
- P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

• Start with the joint probability distribution:

	toothache		⊐ toothache	
	catch ¬ catch		catch	\neg catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

- For any proposition φ, sum the atomic events where it is true: P(φ) = Σ_{ω:ω ⊧φ} P(ω)
- P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

• Start with the joint probability distribution:

	toothache		⊐ toothache	
	$catch \neg catch$		catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity \mid toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$
$$= \frac{0.016+0.064}{0.108+0.012+0.016+0.064}$$
$$= 0.4$$

Normalization

	toothache		⊐ too	⊐ toothache	
	catch	¬ catcl	catch	\neg catch	
cavity	.108	.012	.072	.008	
⊐ cavity	.016	.064	.144	.576	

Denominator can be viewed as a normalization constant α

 $\begin{aligned} \textbf{P}(Cavity \mid toothache) &= \alpha, \ \textbf{P}(Cavity, toothache) \\ &= \alpha, \ [\textbf{P}(Cavity, toothache, catch) + \textbf{P}(Cavity, toothache, \neg catch)] \\ &= \alpha, \ [<0.108, 0.016> + <0.012, 0.064>] \\ &= \alpha, \ <0.12, 0.08> = <0.6, 0.4> \end{aligned}$

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Inference by enumeration, cont'd.

Typically, we are interested in

- the posterior joint distribution of the query variables Y
- given specific values e for the evidence variables E

Let the hidden variables be H = X - Y - E

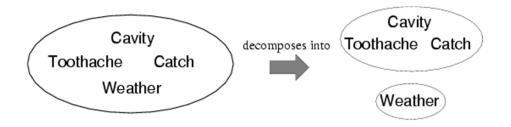
Then the required summation of joint entries is done by summing out the hidden variables:

 $\mathbf{P}(\mathbf{Y} \mid \mathbf{E} = \mathbf{e}) = \alpha \mathbf{P}(\mathbf{Y}, \mathbf{E} = \mathbf{e}) = \alpha \Sigma_{h} \mathbf{P}(\mathbf{Y}, \mathbf{E} = \mathbf{e}, \mathbf{H} = \mathbf{h})$

- The terms in the summation are joint entries because Y, E and H together exhaust the set of random variables
- Obvious problems:
 - 1. Worst-case time complexity $O(d^n)$ where *d* is the largest arity
 - 2. Space complexity $O(d^n)$ to store the joint distribution
 - 3. How to find the numbers for $O(d^n)$ entries?

Independence

• A and B are independent iff $\mathbf{P}(A|B) = \mathbf{P}(A)$ or $\mathbf{P}(B|A) = \mathbf{P}(B)$ or $\mathbf{P}(A, B) = \mathbf{P}(A) \mathbf{P}(B)$



P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity) P(Weather)

32 entries reduced to 12; for n independent biased coins,

 $O(2^n) \rightarrow O(n)$

- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

- **P**(*Toothache, Cavity, Catch*) has $2^3 1 = 7$ independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) **P**(*catch* | *toothache*, *cavity*) = **P**(*catch* | *cavity*)

• The same independence holds if I haven't got a cavity:

(2) $\mathbf{P}(catch \mid toothache, \neg cavity) = \mathbf{P}(catch \mid \neg cavity)$

• *Catch* is conditionally independent of *Toothache* given *Cavity*:

P(*Catch* | *Toothache*, *Cavity*) = **P**(*Catch* | *Cavity*)

Equivalent statements:
 P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

P(*Toothache*, *Catch* | *Cavity*) = **P**(*Toothache* | *Cavity*) **P**(*Catch* | *Cavity*)

Conditional independence cont'd.

- Write out full joint distribution using chain rule:
 - **P**(*Toothache, Catch, Cavity*)

= **P**(*Toothache* | *Catch*, *Cavity*) **P**(*Catch*, *Cavity*)

= **P**(Toothache | Catch, Cavity) **P**(Catch | Cavity) **P**(Cavity)

= **P**(*Toothache* | *Cavity*) **P**(*Catch* | *Cavity*) **P**(Cavity)

I.e., 2 + 2 + 1 = 5 independent numbers

- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Bayes' Rule

• Product rule $P(a \land b) = P(a \mid b) P(b) = P(b \mid a) P(a)$

 \Rightarrow Bayes' rule: P(a | b) = P(b | a) P(a) / P(b)

or in distribution form

 $\mathbf{P}(\mathbf{Y}|\mathbf{X}) = \mathbf{P}(\mathbf{X}|\mathbf{Y}) \ \mathbf{P}(\mathbf{Y}) / \mathbf{P}(\mathbf{X}) = \alpha \mathbf{P}(\mathbf{X}|\mathbf{Y}) \ \mathbf{P}(\mathbf{Y})$

- Useful for assessing diagnostic probability from causal probability:
 - P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)
 - E.g., let *M* be meningitis, *S* be stiff neck:

 $P(m|s) = P(s|m) P(m) / P(s) = 0.8 \times 0.0001 / 0.1 = 0.0008$

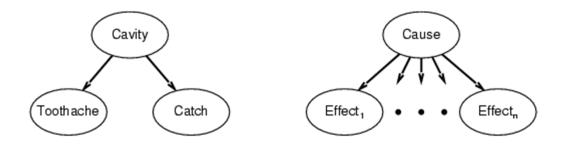
- Note: posterior probability of meningitis still very small!

Bayes' Rule and conditional independence

 $\mathbf{P}(Cavity \mid toothache \land catch)$ = $\alpha \mathbf{P}(toothache \land catch \mid Cavity) \mathbf{P}(Cavity)$ = $\alpha \mathbf{P}(toothache \mid Cavity) \mathbf{P}(catch \mid Cavity) \mathbf{P}(Cavity)$

• This is an example of a naïve Bayes model:

 $P(Cause, Effect_1, \dots, Effect_n) = P(Cause) \pi_i P(Effect_i | Cause)$



• Total number of parameters is linear in *n*

Summary

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size
- Independence and conditional independence provide the tools

