Vorlesung Grundlagen der Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems Department of Informatics – I6 Technische Universität München

www6.in.tum.de lafrenz@in.tum.de 089-289-18136 Room 03.07.055

Wintersemester 2012/13

14.1.2013

Grundlagen der Künstlichen Intelligenz – Techniques in Artificial Intelligence

Chapter 14

Probabilistic Reasoning

R. Lafrenz

Wintersemester 2012/13

14.1.2013

Bayesian networks

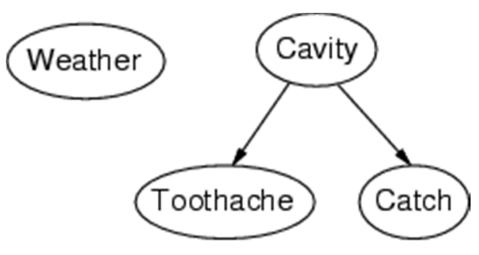
- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
 - a set of nodes, one per variable
 - a directed, acyclic graph (link ≈ "directly influences")
 - a conditional distribution for each node given its parents:

 $\mathbf{P}(X_i | Parents(X_i))$

In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values This quantifies the effect of the parents on the node.

Example

 Topology of network encodes conditional independence assertions:

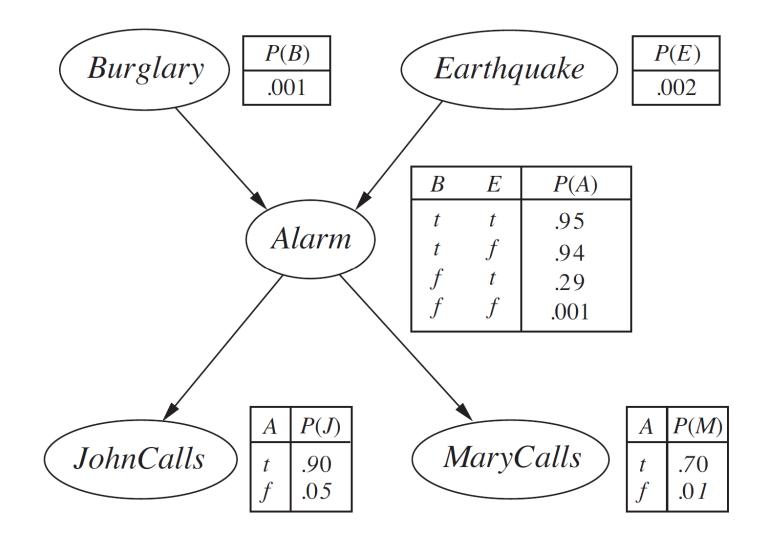


- Weather is independent of the other variables
- Toothache and Catch are conditionally independent given Cavity

Example

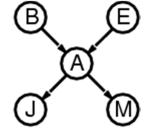
- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Example contd.



Compactness

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values
- Each row requires one number p for X_i = true (the number for X_i = false is just 1-p)

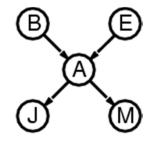


- If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers
- I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution
- For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 2⁵-1 = 31)

Semantics

The full joint distribution is defined as the product of the local conditional distributions:

$$\boldsymbol{P}(X_1, \ldots, X_n) = \pi_{i=1}^n \boldsymbol{P}(X_i | Parents(X_i))$$



 $= \mathbf{P}(j \mid a) \mathbf{P}(m \mid a) \mathbf{P}(a \mid \neg b, \neg e) \mathbf{P}(\neg b) \mathbf{P}(\neg e)$

= 0.90 * 0.7 * 0.001 * 0.999 * 0.998 ≈ 0.00063

Constructing Bayesian networks

- 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For *i* = 1 to *n*
 - add X_i to the network
 - select parents from X_1, \ldots, X_{i-1} such that $P(X_i | Parents(X_i)) = P(X_i | X_1, \ldots, X_{i-1})$ with $Parents(X_i) \subseteq \{X_1, \ldots, X_{i-1}\}$

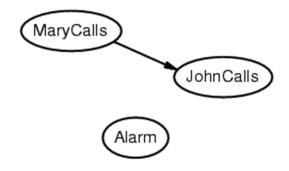
This choice of parents guarantees:

$$P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | X_1, ..., X_{i-1})$$

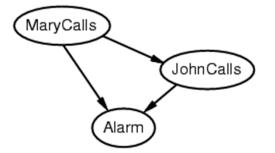
(chain rule)

$$=\prod_{i=1}^{n} P(Xi | Parents(Xi))$$
(by construction)

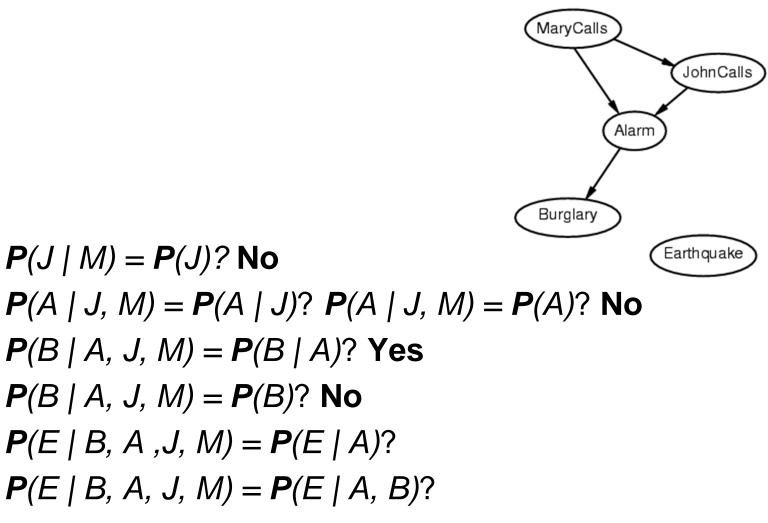
$$\boldsymbol{P}(J \mid M) = \boldsymbol{P}(J)?$$

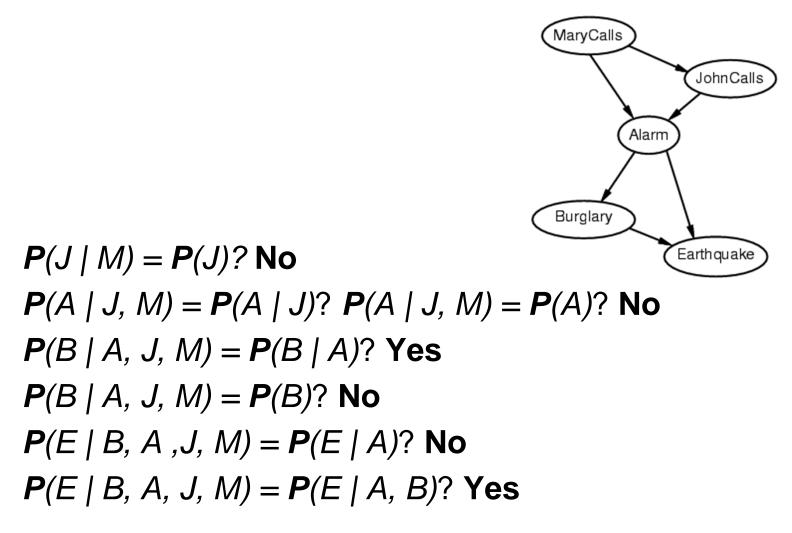


P(J | M) = P(J)? No P(A | J, M) = P(A | J)? P(A | J, M) = P(A)?

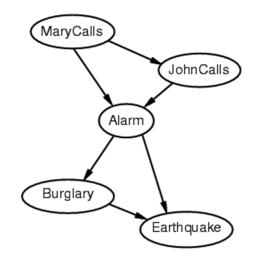


P(J | M) = P(J)? No P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No P(B | A, J, M) = P(B | A)? P(B | A, J, M) = P(B)?





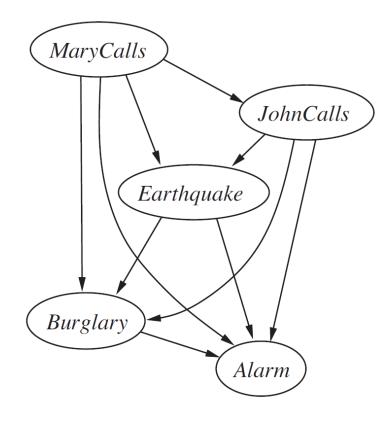
Example contd.



- Deciding conditional independence is hard in noncausal directions
- (Causal models and conditional independence seem hardwired for humans!)
- Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

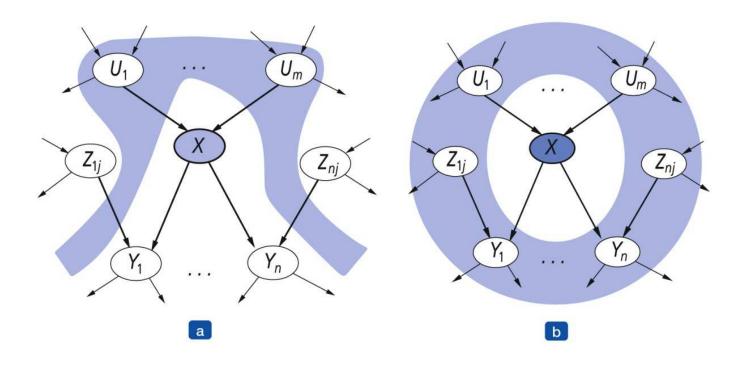
Example contd.

Even worse structure if order is M, J, E, B, A



Structure and conditional independence

- a) Local semantics: each node is conditionally independent of its nondescendants given its parents
- b) Topological semantics: each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents



Compact conditional distributions

- CPT grows exponentially with number of parents
- CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly Deterministic nodes are the simplest case: X = f(Parents(X)) for some function f

E.g., Boolean functions

NorthAmerican \Leftrightarrow Canadian \lor US \lor Mexican

E.g., numerical relationships among continuous variables

 $\frac{\partial Level}{\partial t} = \text{inflow} + \text{precipitation} - \text{outflow} - \text{evaporation}$

Compact conditional distributions contd.

- Noisy-OR distributions model multiple noninteracting causes
- 1) Parents U₁, ..., U_k include all causes (can add leak node)
- 2) Independent failure probability q_i for each cause alone

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
Т	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

 $P(X_i | Parents(X_i)) = 1 - \qquad q_i$

Summary

- Bayes nets provide a natural representation for (causally induced) conditional independence
- Topology + CPTs = compact representation of joint distribution
- Generally easy for (non)experts to construct
- Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

