Vorlesung

Grundlagen der

Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics - I6
Technische Universität München
www6.in.tum.de
lafrenz@in.tum.de
089-289-18136

Room 03.07.055

Grundlagen der Künstlichen Intelligenz - Techniques in Artificial Intelligence

Chapter 3

Solving Problems by Searching

What' the problem?

- Assumption: An agent has a goal
- Described by set of desired states of the world
- How to reach the goal?
- Identify an appropriate formulation of the problem
- What is the right level of abstraction?

http://upload.wikimedia.org/wikipedia/commons/4/44/Compass_in_a_wooden_frame.png

Characteristics of the problem

- Observable
- The agent can determine the current state
- Discrete
- Only a finite set of possible actions in each state
- n ways at each crossing
- Environment fully known
- Knowing the result of each action
- Next town known for each way
- Deterministic
- Exactly one result for each action

What's the solution?

- A solution to a problem as described is a fixed sequence of actions
- Final state is the goal state
- After knowing the solution, the action sequence could be carried out
- Does this always lead to the goal state?

Simple problem-solving agent

```
function SImPLe-ProblEM-Solving-AgENt(percept)
returns an action
static: seq, an action sequence
    state, some description of the current world state
    goal, a goal
    problem, a problem formulation
state}\leftarrow \leftarrow UPDATE-STATE(state, percept
if seq is empty then
    goal }\leftarrow\mathrm{ FORMULATE-GOAL(state)
    problem \leftarrow FORMULATE-PROBLEM (state,goal)
    seq}\leftarrow\mathrm{ SEARCH (problem)
    if seq = failure then return NoOp
action }\leftarrow\textrm{FIRST(seq)
seq}\leftarrow\operatorname{REST(seq)
return action
```


Formal description of a problem

Components

- Initial state
- Set of possible actions for each state s: Actions(s)
- Transition model Result(s,a) defining the successor state
- This defines the state space
- Forms a directed graph
- Path: A sequence of states connected by a sequence of actions
- Goal test, sometimes only properties of a goal state given
- E.g. checkmate

Formal description of a problem

Measuring effectiveness and efficiency:

- Does the method find a solution at all?
- Is it a good solution (low path cost)?
- Path cost function (e.g. sum of costs for each action)
- Measure of quality of a solution
- Step costs defined by $c\left(s_{i}, a, s_{j}\right)$

But that's not all:

- What is the search cost?
- The total cost = search cost + path cost
- may not be commensurate!

Formulating problems

Abstraction needed: Real world is absurdly complex

- As few details as possible
- "Turn right" instead of "change the angle of the steering wheel by 37.3 deg. within a period of 5 sec ."
- Valid abstraction: Each abstract solution can be expanded to one in a more detailed world
- Useful abstraction: Execution of an action is more simple than in the original problem formulation

Examples

- Good old-fashioned Al (GOFAI): toy problems, games, theorem proving, etc.
- Chess, checkers
- n-queens problem
- Missionaries and cannibals
- 8-puzzle
- Traveling salesman problem (TSP)
- The techniques can be applied to real-world problems:
- Route-finding in airline travel planners
- (real) Travelling Salesman Problem
- VLSI layout (cell layout and channel routing)
-"intelligent" manufacturing (assembly sequencing)

Vacuum world: Problem formulation

- States: agent position, state (clean, dirty) of each cell
- 2 fields only: $2 \times 2^{2}=8$ states

Possible positions of the agent

- n fields: $\mathrm{n} \times 2^{\mathrm{n}}$ states

- Initial state: can be defined, each field possible
- Actions: left, right, suck
- State transition model shown in graph
- Goal test: all fields clean
- Path cost: each action costs 1 unit

Vacuum world

8-puzzle

Which abstration is valid and useful?

In general: n-puzzle

n	Field size	Number of states
8	3×3	$9!/ 2=181440$
15	4×4	1.3 e 12
24	5×5	$1 e 25$

8-puzzle

- States: position of the numbers and the empty field
- Initial state: can be defined
- Actions: easiest formulation:

Movement of empty field

- State transition model shown in graph
- Goal test: state equal to given goal state?
- Path cost: each action costs 1 unit

Another example: 8 queens

8 queens: Problem formulations

2 possibilities: incremental vs. complete

	Incremental	complete
States	Position of i queens	Position of n queens
Initial state	Empty field	All queens distributed
Action	Add queen	Move queen

Good abstraction using incremental view:

- State: i queens, one per column in i most left columns
- Transition: add queen in most left empty column

A real-world problem

- How to get from Arad to Bucharest?

How to solve these problems?

- Search trees, nodes represent states

General search algorithm

```
function GenERAL-Tree-SeARCH(problem)
returns a solution or an error
static: open, the set of frontier nodes, initialized with root node
forever
    if open is empty then return error
    take a node out of open
    if this node contains a goal state then return solution
    expand this node (i.e. take all successors)
    add resulting nodes (successors) to open
```


How to solve these problems?

- Search trees, nodes represent states

General search algorithm avoiding loops

```
function GeNERAL-GRAPH-SEARCH(problem)
returns a solution or an error
static: open, the set of frontier nodes, initialized with root node
    closed, the nodes already visited, initally empty set
forever
    if open is empty then return error
    take a node out of open
    add this node to closed
    if this node contains a goal state then return solution
    expand this node (i.e. take all successors not in closed)
    add resulting nodes (successors) to open
```


Graph search

- Each path from initial state to an unexplored state has to cross the border described by open. Open set forms a separator

(a)

(b)

(c)

Graph search: data structures

- Nodes described by attributes:
- State
- Parent
- Action
- Path-cost
- Depth

- Nodes can be stored in queues (FIFO, LIFO, prioritized) Operators:
- Empty?(queue)
- Pop(queue)
- INSERT(element, queue)

Criteria for choosing an algorithm

- Completeness: Does the algorithms find a solution ifo one exists?
- Optimality: Does the algorithm find the optimal solution (lowest path cost)?
- Time complexity: How long does it take to find a solution?
- Space complexity: How much memory is needed?
- Complexity in theoretical CS described for $|\mathrm{V}|+|\mathrm{E}|$
- Number of edges plus number of vertices
- Complexity of infinite search spaces?
- Often the case in AI

Criteria for choosing an algorithm

- Complexity of AI problems often described by 3 numbers
- b: branching factor, i.e. max. or avg. number of successors
- d: depth, i.e. number of steps from the root to the "lowest" leaf
- m: maximum length of any path in the search space
- Consideration of seach costs or the total with action costs

Search strategies

- Uninformed vs. informed search

Uninformed or blind search

- Another look at the graph-search algorithm

```
function GENERAL-GrAPh-SEARCH(problem)
returns a solution or an error
static: open, the initial state (set of nodes)
    closed, the nodes already visited, initally empty set
forever
    if open is empty then return error
    take a node out of open
    add this node to closed
    if this node contains a goal state then return solution
    expand this node (i.e. take all successors not in closed)
    add resulting nodes (successors) to open
```

- Degree of freedom: way of adding successor nodes

Uninformed or blind search

- No information about length or costs of a path
- Breadth-first
- Depth-first
- Uniform-cost
- Depth-limited
- Iterative deepening
- Bi-directional

Breadth-first search

- Add nodes at the end of the open queue
- Search Pattern: "spread before dive"

open
(A)
(B, C)
(C,D,E)
(D,E,F,G)
initial state

Optimization: test for goal state already when node created

Breadth-first search

- Completeness?
- Yes, if deepest node at finite depth d
- Optimal?
- Yes, if uniform step costs
- Time complexity:
$-b+b^{2}+b^{3}+\ldots+b^{d}=O\left(b^{d}\right)$
- Space complexity
- O(bd)
- What if no uniform step costs?

Uniform-cost search

- Idea: store new nodes in priority queue
(Sibiu-0)
(Riminiu Vilcea-80, Fagaras-99
(Fagaras-99, Pitesti-177)
(Pitesti-177, Bucharest-310)
(Bucharest-278)

Uniform-cost search

- Completeness?
- Yes, if b finite and step costs $c>=\varepsilon>0$ for all actions
- Optimal?
- Yes
- Time complexity:
- $O\left(b^{1+C^{*} / \varepsilon}\right)$, with C^{*} : cost of the optimal solution, $\varepsilon>0$: min. action cost
- Space complexity
$-O\left(b^{1+C^{*} / \varepsilon}\right)$

Depth-first search

- Add nodes at the front of the open queue
- Search Pattern: "dive before spread"

(A)
(H,I,E,C)
(B,C)
(I,E,C)
(D,E,C)
(E, C)

Depth-first search

- Add nodes at the front of the open queue

open
(J,K,C)
(K,C)
(F,G)
(L,M,G)
(C)
(M,G)

Depth-first search

- Completeness?
- No
- Optimal?
- No
- Time complexity:
- O(bm)
- Space complexity
- O(bm)

Depth-limited search

- Treat nodes with depth >= $\mathrm{d}_{\text {max }}$ as if no sucessors
- $\mathrm{d}_{\text {max }} \rightarrow \infty$ leads to dept-first search
- Completeness?
- No
- Optimal?
- No
- Time complexity:
- O(bd ${ }_{\text {max }}$
- Space complexity
- O(b d max)

Iterative deepening depth-frist search

Limit $=3$ (A)

Iterative deepening depth-frist search

- Repetition of search for the upper levels, can be ignored
- Prefereed choice for large search spaces and unknown depth
- Completeness?
- Yes, if b finite
- Optimal?
- Yes, if uniform step costs
- Time complexity:
- O(bd)
- Space complexity
- O(b d)

Bi-directional search

How to check for solution?
Test for non-empty intersection set of open

- Completeness?
- Yes, if b finite and breadth-first in both directions
- Optimal?
- Yes, if uniform step costs and breadth-first in both directions
- Time complexity:
$-O\left(b^{d / 2}\right)$, much better than breadth-first because $2 \times b^{d / 2} \ll b^{d}$
- Space complexity
- $O\left(b^{d / 2}\right)$

Bi-directional search

Problems:

- Operators are not always or only very diffcultly invertible (computation of parent nodes)
- In come cases there exist many goal states, which are described only partially. Example: predecessor state of "checkmate".
- One needs effcient procedures in order to test whether the search procedures have met
- Which search method should one use for each direction?

Summary

- In order to search for a solution, an agent has to define its goal and based on this the agent has to defineits problem
- A problem consists of 5 parts: state space, initial state, operators, goal test and path costs. A path from the initial state to a goal state is a solution.
- There exists a general search algorithm that can be used to find solutions. Special variants of the algorithm make use of different search strategies.

Summary

- Search algorithms are evaluated on the basis of the following criteria:
- completeness, optimality, time- and space complexity.

Criterion	BreadithFirst	Uniform Cost	DepthFirst	DepthLimited	Iterative Deep.	Bidirec.
Complete	Yes	Yes	No	No	Yes	Yes
Time	$\mathrm{O}\left(\mathrm{b}^{\text {d }}\right.$)	$\mathrm{O}\left(\mathrm{b}^{\left.1+c^{\circ} / \varepsilon\right)}\right.$	$\mathrm{O}\left(\mathrm{b}^{\mathrm{m}}\right)$	$\mathrm{O}\left(\mathrm{b}^{\text {max }}\right.$)	$\mathrm{O}\left(\mathrm{b}^{\text {d }}\right.$)	$\mathrm{O}\left(\mathrm{b}^{\mathrm{d} / 2}\right)$
Space	$\mathrm{O}\left(\mathrm{b}^{\text {d }}\right.$)	$\mathrm{O}\left(\mathrm{b}^{1+c^{+} / \varepsilon}\right)$	$\mathrm{O}(\mathrm{bm})$	$\mathrm{O}\left(\mathrm{bd}_{\text {max }}\right)$	O(bd)	$\mathrm{O}\left(\mathrm{b}^{\text {d/2 }}\right.$)
Optimal	Yes	Yes	No	No	Yes	Yes

