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Chapter 3

Solving Problems by Searching



What’ the problem?

� Assumption: An agent has a goal
– Described by set of desired states of the world

� How to reach the goal?
� Identify an appropriate formulation of the problem

– What is the right level of abstraction?
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Characteristics of the problem

� Observable
– The agent can determine the current state

� Discrete
– Only a finite set of possible actions in each state
– n ways at each crossing

� Environment fully known
– Knowing the result of each action
– Next town known for each way

� Deterministic
– Exactly one result for each action
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What‘s the solution ?

� A solution to a problem as described is a fixed sequence
of actions
– Final state is the goal state

� After knowing the solution, the action sequence could be
carried out
– Does this always lead to the goal state?
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Simple problem -solving agent
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function SIMPLE-PROBLEM-SOLVING-AGENT(percept)
returns an action

static: seq, an action sequence
state, some description of the current world state
goal, a goal
problem, a problem formulation

state ← UPDATE-STATE(state, percept)
if seq is empty then

goal ← FORMULATE-GOAL(state)
problem ← FORMULATE-PROBLEM (state,goal)
seq ← SEARCH (problem)
if seq = failure then return NoOp

action ← FIRST(seq)
seq ← REST(seq)
return action



Formal description of a problem

Components

� Initial state
� Set of possible actions for each state s: ACTIONS(s)
� Transition model RESULT(s,a) defining the successor state

– This defines the state space
– Forms a directed graph
– Path: A sequence of states connected by a sequence of actions

� Goal test, sometimes only properties of a goal state given
– E.g. checkmate
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Formal description of a problem

Measuring effectiveness and efficiency:
� Does the method find a solution at all?
� Is it a good solution (low path cost)?

– Path cost function (e.g. sum of costs for each action)
– Measure of quality of a solution
– Step costs defined by c(si, a, sj)

But that‘s not all:
� What is the search cost?
� The total cost = search cost + path cost 

– may not be commensurate!
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Formulating problems

Abstraction needed: Real world is absurdly complex 

� As few details as possible
– “Turn right“ instead of “change the angle of the steering wheel by

37.3 deg. within a period of 5 sec.“

� Valid abstraction: Each abstract solution can be expanded
to one in a more detailed world

� Useful abstraction: Execution of an action is more simple 
than in the original problem formulation
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Examples

� Good old-fashioned AI (GOFAI): toy problems, games, 
theorem proving, etc.
– Chess, checkers
– n-queens problem
– Missionaries and cannibals
– 8-puzzle
– Traveling salesman problem (TSP)

� The techniques can be applied to real-world problems:
– Route-finding in airline travel planners
– (real) Travelling Salesman Problem
– VLSI layout (cell layout and channel routing)
– “intelligent” manufacturing (assembly sequencing)
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Vacuum world : Problem formulation

� States: agent position, state (clean, dirty) of each cell
– 2 fields only: 2 x 22 = 8 states

– n fields: n x 2n states

� Initial state: can be defined, each field possible
� Actions: left, right, suck
� State transition model shown in graph
� Goal test: all fields clean
� Path cost: each action costs 1 unit
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Vacuum world

12



8-puzzle
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Which abstration is valid and useful?

In general: n-puzzle

n Field size Number of states

8 3x3 9! / 2 = 181440

15 4x4 1.3e12

24 5x5 1e25



8-puzzle

� States: position of the numbers and the empty field

� Initial state: can be defined

� Actions: easiest formulation:

� State transition model shown in graph

� Goal test: state equal to given goal state?

� Path cost: each action costs 1 unit
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Another example: 8 queens
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8 queens: Problem formulations

2 possibilities: incremental vs. complete
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Incremental complete

States Position of i queens Position of n queens

Initial state Empty field All queens distributed

Action Add queen Move queen

Transition New state, i+1 queens New state, 8 queens

Goal test 8 queens on the field, none
attacked

Problem size 64x63x62x…x57= 1e14

Good abstraction using incremental view:
� State: i queens, one per column in i most left columns
� Transition: add queen in most left empty column

2057



A real-world problem
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� How to get from Arad to Bucharest?



How to solve these problems?

� Search trees, nodes represent states
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General search algorithm
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function GENERAL-TREE-SEARCH(problem)
returns a solution or an error

static: open,  the set of frontier nodes, initialized with root node

forever
if open is empty then return error
take a node out of open
if this node contains a goal state then return solution
expand this node (i.e. take all successors)
add resulting nodes (successors) to open



How to solve these problems?

� Search trees, nodes represent states
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General search algorithm avoiding loops
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function GENERAL-GRAPH-SEARCH(problem)
returns a solution or an error

static: open, the set of frontier nodes, initialized with root node
closed, the nodes already visited, initally empty set

forever
if open is empty then return error
take a node out of open
add this node to closed
if this node contains a goal state then return solution
expand this node (i.e. take all successors not in closed)
add resulting nodes (successors) to open



Graph search

� Each path from initial state to an unexplored state has to
cross the border described by open. Open set forms a 
separator
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“Dead end“, all 
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visited



Graph search : data structures

� Nodes described by attributes:
– State
– Parent
– Action
– Path-cost
– Depth

� Nodes can be stored in queues (FIFO, LIFO, prioritized)
Operators:
– EMPTY?(queue)
– POP(queue)
– INSERT(element, queue)
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Criteria for choosing an algorithm

� Completeness: Does the algorithms find a solution ifo one
exists?

� Optimality: Does the algorithm find the optimal solution
(lowest path cost)?

� Time complexity: How long does it take to find a solution?
� Space complexity: How much memory is needed?

� Complexity in theoretical CS described for |V|+|E|
– Number of edges plus number of vertices

� Complexity of infinite search spaces?
– Often the case in AI
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Criteria for choosing an algorithm

� Complexity of AI problems often described by 3 numbers
– b: branching factor, i.e. max. or avg. number of successors
– d: depth, i.e. number of steps from the root to the “lowest“ leaf
– m: maximum length of any path in the search space

� Consideration of seach costs or the total with action costs
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Search strategies

� Uninformed vs. informed search
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Uninformed or blind search

� Another look at the graph-search algorithm

� Degree of freedom: way of adding successor nodes
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function GENERAL-GRAPH-SEARCH(problem)
returns a solution or an error

static: open,  the initial state (set of nodes)
closed, the nodes already visited, initally empty set

forever
if open is empty then return error
take a node out of open
add this node to closed
if this node contains a goal state then return solution
expand this node (i.e. take all successors not in closed)
add resulting nodes (successors) to open



Uninformed or blind search

� No information about length or costs of a path
– Breadth-first
– Depth-first
– Uniform-cost
– Depth-limited
– Iterative deepening
– Bi-directional
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Breadth -first search

� Add nodes at the end of the open queue
� Search Pattern: “spread before dive”

open
(A)                          (B,C) (C,D,E) (D,E,F,G)
initial state

Optimization: test for goal state already when node created
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Breadth -first search

� Completeness?
– Yes, if deepest node at finite depth d

� Optimal?
– Yes, if uniform step costs

� Time complexity:
– b+b2+b3+ …+bd = O(bd)

� Space complexity
– O(bd)

� What if no uniform step costs?
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� Idea: store new nodes in priority queue

(Sibiu-0)
(Riminiu Vilcea-80, Fagaras-99)
(Fagaras-99, Pitesti-177)
(Pitesti-177, Bucharest-310)
(Bucharest-278)

Uniform-cost search
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Uniform -cost search

� Completeness?
– Yes, if b finite and step costs c>=ε>0 for all actions

� Optimal?
– Yes

� Time complexity:
– O(b1+C*/ε), with C*: cost of the optimal solution, 

ε>0: min. action cost

� Space complexity
– O(b1+C*/ε)
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Depth -first search

� Add nodes at the front of the open queue
� Search Pattern: “dive before spread”

(A)                                    (B,C) (D,E,C)
(H,I,E,C)                          (I,E,C) (E,C)
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Depth -first search

� Add nodes at the front of the open queue

open
(J,K,C)                      (K,C) (C)
(F,G)                      (L,M,G) (M,G)
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Depth -first search

� Completeness?
– No

� Optimal?
– No

� Time complexity:
– O(bm)

� Space complexity
– O(bm)
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Depth -limited search

� Treat nodes with depth >= dmax as if no sucessors
� dmax → ∞ leads to dept-first search

� Completeness?
– No

� Optimal?
– No

� Time complexity:
– O(bdmax)

� Space complexity
– O(b dmax)
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Iterative deepening depth -frist search
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Iterative deepening depth -frist search

� Repetition of search for the upper levels, can be ignored
� Prefereed choice for large search spaces and unknown

depth

� Completeness?
– Yes, if b finite

� Optimal?
– Yes, if uniform step costs

� Time complexity:
– O(bd)

� Space complexity
– O(b d)
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Bi-directional search

� Completeness?
– Yes, if b finite and breadth-first in both directions

� Optimal?
– Yes, if uniform step costs and breadth-first in both directions

� Time complexity:
– O(bd/2),     much better than breadth-first because 2x bd/2 <<  bd

� Space complexity
– O(bd/2)
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How to check for solution?
Test for non-empty intersection set of open



Bi-directional search

Problems:
� Operators are not always or only very diffcultly invertible 

(computation of parent nodes)
� In come cases there exist many goal states, which are 

described only partially. Example: predecessor state of 
“checkmate".

� One needs effcient procedures in order to test whether the 
search procedures have met

� Which search method should one use for each direction? 
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Summary

� In order to search for a solution, an agent has to define its 
goal and based on this the agent has to defineits problem

� A problem consists of 5 parts: state space, initial state, 
operators, goal test and path costs. A path from the initial 
state to a goal state is a solution.

� There exists a general search algorithm that can be used 
to find solutions. Special variants of the algorithm make 
use of different search strategies.
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Summary

� Search algorithms are evaluated on the basis of the 
following criteria:

� completeness, optimality, time- and space complexity.
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Criterion Breadth-
First

Uniform 
Cost

Depth-
First 

Depth-
Limited 

Iterative
Deep.

Bidirec.

Complete Yes Yes No No Yes Yes

Time O(bd) O(b1+C*/ε) O(bm) O(bdmax) O(bd) O(bd/2)

Space O(bd) O(b1+C*/ε) O(bm) O(b dmax) O(bd) O(bd/2)

Optimal Yes Yes No No Yes Yes


