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Chapter 3

Solving Problems by Searching : 
Informed (Heuristic) Search
(cont‘d )



Finding heuristic functions

� What is a good heuristic function?

� h1 = number of tiles at wrong location
� h2 = sum of distances between tiles and their goal location 

(Manhattan distance)
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Empirical evaluation of different heuristics

� d = distance to goal
� Average over 100 instances
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Effect of heuristic precision

Effective branching factor: Let N = number of expanded nodes
� d = depth of solution in search space
� then b* is the branching factor of the uniform search tree 

with depth d and N nodes
� N+1 = 1 + b* + (b*)2 + … + (b*)d

Dominance of heuristics
� h1 dominate h2, if for all nodes n is true that:

h1(n) ≥ h2(n)
� This also means that A* with h1 expands less nodes than h2 

on average
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Choice of heuristics

� If possible, choose heuristics with higher values
– Needs to be admissible/consistent
– Check for calculation time of heuristics

� Example: h1 and h2 are heuristics for the 8-puzzle

� They also describe the exact path length for relaxed 
problems
– Relaxed problem solved by h1 : Arbitrary jump of each field to the 

empty one
– Relaxed problem solved by h2 : Any move (one step horizontally or 

vertically) is possible, even if position occupied
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Choice of heuristics

� What if there is no “unambiguously best“ heuristic?

� Assume, several (admissible/consistent) heuristics h1, h2, … 
hm exist. How to choose?

� Combine all!
h(n) = max (h1(n), h2(n), … hm(n))

This takes the most precise one for each node.

� Given that h1, h2, … hm are admissible/consistent. Does this 
also hold true for h?
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Chapter 4

Beyond Classical Search



Local search and optimization

� Up to now: 
– systematic exploration of search spaces
– Keep track of alteranatives for each node along the path
– The path is the solution

� What if only the final state is of interest for the solution?

Local search

� Examples:
– 8-queens problem
– VLSI design,
– TSP
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Local search and optimization

� Define an objective function that evaluates states
� Use this function to optimize the search for a solution
� Idea: start with a random configuration and increase the 

solution stepwise       Hill climbing
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Hill climbing

� Define an objective function that evaluates states
� Goal: maximizing the objective function
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function HILL-CLIMBING(problem) 
returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node

neighbor, a node

current ← MAKE-NODE(problem.INITIAL-STATE)
loop do

neighbor ← a highest-valued successor of current
if neighbor. VALUE ≤ current. VALUE then

return current.STATE

current ← neighbor
end



Hill climbing : Example 8-queen problem

� Cost function: number of attacks
� Next state: Only one vertical move (queens remain in 

column)
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h=17 h=1 (local minimum)



Problems of local search

� Local maxima: algorithm returns a sub-optimal solution.
� Plateaus: algorithm can only explore randomly.
� Edges: similar to plateaus.
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Problems of local search

� Local maxima: algorithm returns a sub-optimal solution.
� Plateaus: algorithm can only explore randomly.
� Edges: similar to plateaus.

Solutions:
� Re-start, if no increase in performance
� Noise, random walk
� Restricted search: the last n operators cannot be applied

Strategies (and their parameters) that perform successfully (on 
a certain type of problem) can in most cases only be 
determined empirically.
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Simulated annealing

� Introduction of noise
� Imagine rough surface, “shake“ the system to overcome

local minima
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Local beam search

� Restrict the nodes in memory to constant k
� Initialize list with k random nodes
� Explore all successors of all k nodes
� Take the “best“ k nodes out of this list, according to

optimization function and use them for next step

Problem: concentration on small area (promising?) of the
search space

� Updated list not with best k nodes, but with randomly
chosen ones, based on a distribution given by the objective
function
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Genetic algorithms

Evolution seems to be successful
Idea: Similar to evolution, solutions are searched by applying 

operators like ”cross-over”, “mutation” and “selection” to 
already successful solutions.

Components:
� Encoding of configurations as string or bit-string
� “Fitness" function that evaluates the goodness of a 

configuration
� Populations of configurations, initially random choice
Example: 8 queens problem encoded as string of 8 digits. 

Fitness function is computed based on the number of 
non-attacks (28=7+6+5+…+1 for a solution)
Population consists of the set of queen configurations.
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Genetic algorithms: 8-queen problem

� Compute fitness for each configuration in population
� Choose two pairs for crossover, probability based on fitness
� Randomly choose crossover position for each pair
� Choose mutation with low probability
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Genetic algorithms: 8-queen problem
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Search with non -deterministic action results

� Result of an action can be
unobservable (or partially)
observable

� Result of an action can be
non-deterministic

� No clear sequence of
actions possible

contingency plan
or strategy
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Search with non -deterministic action results

� Reconsider vacuum world with additional properties of the
“suck“ action:
– Somtimes also the other field is cleaned
– In case of a clean field, dirt may be released

� No unique result of an action, but a set of possible
outcomes
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Search with non -deterministic action results

� Describe contingency plan in form of result-dependent
action sequence

[action, result-dependent successor actions]

� Example:
[SUCK, if state=5 then [RIGHT, SUCK] else []]

� These resulting if-then-else cascades lead to decision trees

� Two types of branching out possible
– Agent‘s own decision (what is the next action?)
– Depending of the (non-deterministic) outcome of an action
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Search with non -deterministic action results

� Search trees can be described as tree with two types of
nodes
– OR-nodes describe actions chosen by the agent
– AND-nodes describe possbile outcomes

� Alternating “layers“ of nodes (OR,AND) in the search tree
� A solution to a problem is a subtree with

– A goal node at each leave
– An action for each OR node
– All branches of an AND-node included

� Several search strategies can be applied, e.g. depth-frist, …
� Finding heuristic functions is more complicated

– Estimation of costs for a contingency plan instead of an action
sequence
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Search with non -deterministic action results
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Agent‘s choice
(OR node)

Possbile outcomes
(AND node)



Search with non -deterministic action results

� What if “move“ actions fail?
E.g. “Right“

� No acyclic solution anymore, search fails
� Introduce labels for parts of plans

[SUCK, L1 : RIGHT, if state=5 then L1 else SUCK]

or simply while state=5 do right
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Search with non -deterministic action results
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Summary

� Criteria for choosing “good“ heuristics

� Local search and optimization
– Useful if only the final state is of interest
– Problem: local minima, plateaus, etc.
– Several algorithms: hill-climbing, simulated annealing, local beam 

search, genetic algorithms, etc.

� Search with non-deterministic action results
– Contingency plan instead of action sequence
– AND-OR-trees
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No class on Friday, 9 th November 2012!

When? 9-17h
Where? Immatrikulationshalle Campus Stadtmitte
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