Vorlesung Grundlagen der Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems Department of Informatics – I6 Technische Universität München

www6.in.tum.de lafrenz@in.tum.de 089-289-18136 Room 03.07.055

Wintersemester 2012/13

5.11.2012

Grundlagen der Künstlichen Intelligenz – Techniques in Artificial Intelligence

Chapter 3

Solving Problems by Searching: Informed (Heuristic) Search (cont'd)

R. Lafrenz

Wintersemester 2012/13

5.11.2012

Finding heuristic functions

What is a good heuristic function?

Start State

Goal State

4

7

2

5

8

- h_1 = number of tiles at wrong location
- *h*₂ = sum of distances between tiles and their goal location (Manhattan distance)

3

6

Empirical evaluation of different heuristics

- d = distance to goal
- Average over 100 instances

	Se		Effective Branching Factor			
d	IDS	$A^{*}(h_{1})$	$A^{*}(h_{2})$	IDS	$A^{*}(h_{1})$	$A^{*}(h_{2})$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	3473941	<mark>5</mark> 39	113	2.83	1.44	1.23
16	—	1301	211		1.4 <mark>5</mark>	1.25
18	—	3056	363		1.46	1.26
20	—	7276	676		1.47	1.27
22	—	18094	1219		1.48	1.28
24		39135	1641		1.48	1.26

4

Effect of heuristic precision

Effective branching factor: Let N = number of expanded nodes

- *d* = depth of solution in search space
- then b* is the branching factor of the uniform search tree with depth d and N nodes
- $N+1 = 1 + b^* + (b^*)^2 + ... + (b^*)^d$

Dominance of heuristics

- h_1 dominate h_2 , if for all nodes n is true that: $h_1(n) \ge h_2(n)$
- This also means that A* with h₁ expands less nodes than h₂ on average

Choice of heuristics

- If possible, choose heuristics with higher values
 - Needs to be admissible/consistent
 - Check for calculation time of heuristics
- Example: h_1 and h_2 are heuristics for the 8-puzzle
- They also describe the exact path length for relaxed problems
 - Relaxed problem solved by h_1 : Arbitrary jump of each field to the empty one
 - Relaxed problem solved by h_2 : Any move (one step horizontally or vertically) is possible, even if position occupied

Choice of heuristics

- What if there is no "unambiguously best" heuristic?
- Assume, several (admissible/consistent) heuristics h₁, h₂, ...
 h_m exist. How to choose?
- Combine all!

 $h(n) = max (h_1(n), h_2(n), \dots h_m(n))$

This takes the most precise one for each node.

Given that h₁, h₂, ... h_m are admissible/consistent. Does this also hold true for h?

Grundlagen der Künstlichen Intelligenz – Techniques in Artificial Intelligence

Chapter 4

Beyond Classical Search

R. Lafrenz

Wintersemester 2012/13

5.11.2012

Local search and optimization

- Up to now:
 - systematic exploration of search spaces
 - Keep track of alteranatives for each node along the path
 - The path is the solution
- What if only the final state is of interest for the solution?

- Examples:
 - 8-queens problem
 - VLSI design,
 - TSP

Local search and optimization

- Define an objective function that evaluates states
- Use this function to optimize the search for a solution
- Idea: start with a random configuration and increase the solution stepwise → Hill climbing

Hill climbing

- Define an objective function that evaluates states
- Goal: maximizing the objective function

```
function HILL-CLIMBING(problem)
returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node
```

```
current ← MAKE-NODE(problem.INITIAL-STATE)
loop do
```

neighbor ← a highest-valued successor of current if neighbor. VALUE ≤ current. VALUE then return current.STATE current ← neighbor

end

Hill climbing: Example 8-queen problem

- Cost function: number of attacks
- Next state: Only one vertical move (queens remain in column)

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	ų M	13	16	13	16
Ŵ	14	17	15	Ŵ	14	16	16
17	Ŵ	16	18	15	j J	15	Ŵ
18	14	Ŵ	15	15	14	Ŵ	16
14	14	13	17	12	14	12	18

h=1 (local minimum)

Problems of local search

- Local maxima: algorithm returns a sub-optimal solution.
- Plateaus: algorithm can only explore randomly.
- Edges: similar to plateaus.

Problems of local search

- Local maxima: algorithm returns a sub-optimal solution.
- Plateaus: algorithm can only explore randomly.
- Edges: similar to plateaus.

Solutions:

- Re-start, if no increase in performance
- Noise, random walk
- Restricted search: the last n operators cannot be applied

Strategies (and their parameters) that perform successfully (on a certain type of problem) can in most cases only be determined empirically.

Simulated annealing

- Introduction of noise
- Imagine rough surface, "shake" the system to overcome local minima

```
function SIMULATED-ANNEALING( problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to "temperature"

local variables: current, a node

next, a node

T, a "temperature" controlling prob. of downward steps

current \leftarrow MAKE-NODE(INITIAL-STATE[problem])

for t \leftarrow 1 to \infty do

T \leftarrow schedule[t]

if T = 0 then return current

next \leftarrow a randomly selected successor of current

\Delta E \leftarrow VALUE[next] - VALUE[current]

if \Delta E > 0 then current \leftarrow next

else current \leftarrow next only with probability e^{\Delta E/T}
```


Local beam search

- Restrict the nodes in memory to constant k
- Initialize list with k random nodes
- Explore all successors of all k nodes
- Take the "best" k nodes out of this list, according to optimization function and use them for next step

Problem: concentration on small area (promising?) of the search space

 Updated list not with best k nodes, but with randomly chosen ones, based on a distribution given by the objective function

Genetic algorithms

Evolution seems to be successful

Idea: Similar to evolution, solutions are searched by applying operators like "cross-over", "mutation" and "selection" to already successful solutions.

Components:

- Encoding of configurations as string or bit-string
- "Fitness" function that evaluates the goodness of a configuration
- Populations of configurations, initially random choice
- Example: 8 queens problem encoded as string of 8 digits. Fitness function is computed based on the number of non-attacks (28=7+6+5+...+1 for a solution) Population consists of the set of queen configurations.

Genetic algorithms: 8-queen problem

- Compute fitness for each configuration in population
- Choose two pairs for crossover, probability based on fitness
- Randomly choose crossover position for each pair
- Choose mutation with low probability

Genetic algorithms: 8-queen problem

- Result of an action can be unobservable (or partially) observable
- Result of an action can be non-deterministic

No clear sequence of actions possible

contingency plan or strategy

- Reconsider vacuum world with additional properties of the "suck" action:
 - Somtimes also the other field is cleaned
 - In case of a clean field, dirt may be released
- No unique result of an action, but a set of possible outcomes

 Describe contingency plan in form of result-dependent action sequence

[action, result-dependent successor actions]

• Example:

[SUCK, if state=5 then [RIGHT, SUCK] else []]

- These resulting if-then-else cascades lead to decision trees
- Two types of branching out possible
 - Agent's own decision (what is the next action?)
 - Depending of the (non-deterministic) outcome of an action

- Search trees can be described as tree with two types of nodes
 - OR-nodes describe actions chosen by the agent
 - AND-nodes describe possbile outcomes
- Alternating "layers" of nodes (OR,AND) in the search tree
- A solution to a problem is a subtree with
 - A goal node at each leave
 - An action for each OR node
 - All branches of an AND-node included
- Several search strategies can be applied, e.g. depth-frist, ...
- Finding heuristic functions is more complicated
 - Estimation of costs for a contingency plan instead of an action sequence

What if "move" actions fail?
 E.g. "Right"

- No acyclic solution anymore, search fails
- Introduce labels for parts of plans
 [SUCK, L₁ : RIGHT, if state=5 then L₁ else SUCK]

```
or simply while state=5 do right
```


Summary

- Criteria for choosing "good" heuristics
- Local search and optimization
 - Useful if only the final state is of interest
 - Problem: local minima, plateaus, etc.
 - Several algorithms: hill-climbing, simulated annealing, local beam search, genetic algorithms, etc.
- Search with non-deterministic action results
 - Contingency plan instead of action sequence
 - AND-OR-trees

No class on Friday, 9th November 2012!

When?9-17hWhere?Immatrikulationshalle Campus Stadtmitte

