
Vorlesung

Grundlagen der
Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics – I6
Technische Universität München

www6.in.tum.de
lafrenz@in.tum.de
089-289-18136
Room 03.07.055

Wintersemester 2012/13 2.11.2012

Grundlagen der Künstlichen Intelligenz – Techniques in Artificial Intelligence

R. Lafrenz Wintersemester 2012/13 2.11.2012

Chapter 3

Solving Problems by Searching :
Informed (Heuristic) Search

What’ the problem?

Combinatorial explosion:
� Uninformed search leads to exponential time and can only

be solved for small problems
– 15-puzzle: 1013 configurations
– Rubik‘s cube: 4 x 1019 configurations

• 1 million years with 1 turn per second

– Chess: 10120 configurations (asuming ~ 40 moves)

How to solve it?
� Use additional information to reduce complexity
� Choose the node to expand based on an estimation on

how fast the goal can be reached

3

Heuristics and their properties

Make use of domain knowledge:
„more knowledge, less search“

� Domain knowledge can be considered as „rules of thumb“
� Heuristics are simple rules that evaluate nodes with

respect to the distance to the goal
� Good heuristics are

– Good estimators
– Simple and fast to compute

4

Best-first Search

� Information about the costs from a given node to the goal:
– Evaluation function h, giving a real number for each node
– Ideal case:

• Knowing the correct costs from the node to the goal

– Simple heuristics:
• Euklidian distance
• Manhatten distance

� Modify the generic graph-search algorithm using the
heuristics

� When h is correct, i.e. estimation gives the actual costs:
Follow the path of lowest cost, no need to search

5

Modify generic graph -search algorithm
for best-first search

� Way of adding successor nodes defined by the heuristics

6

function HEURISTIC-SEARCH(problem, h)
returns a solution or an error

static: open, the initial state (set of nodes)
closed, the nodes already visited, initally empty set

forever
if open is empty then return error
take a node out of open
add this node to closed
if this node contains a goal state then return solution
expand this node (i.e. take all successors not in closed)
add successor nodes to open using h

Greedy best-first search

� The „goodness“ of a node is determined by the distance to
the goal

h (n) = estimated distance from node n to the goal
� Constraint for h: h(n) = 0, if n is a goal node

� In path planning: Direct distance between two locations

7

Greedy best-first search: From Arad to Bucharest

8

Air-line
distances
to Bucharest

Greedy best-first search: From Arad to Bucharest

9

Use air-line distance
as heuristic function h

Heuristics

� In case of greedy search, the evaluation function h is
called a heuristic function or simply heuristic

� Name comes from greek ευρισκειν (to find, „Eureka!“)

� In AI:
– Heuristics are fast, but probably incomplete methods for solving

problems [Newell, Shaw, Simon 1963]
– Heuristics are a means to accelerate search in average case

� A heuristic is problem-specific and focused on search

10

A* algorithm

� Minimizes the estimated path costs
� Combines uniform cost search and best first greedy

g(n): cost so far to reach n
h(n): estimated cost from n to a goal node
f(n) = g(n) + h(n): estimated total path cost through n

Let h* be the true cost of an optimal path from n to goal
h is admissible, if for all nodes n:

h(n) ≤ h*(n)
h is optimistic, h never overestimates the actual costs

11

A*: From Arad to Bucharest

12

Air-line
distances
to Bucharest

A*: From Arad to Bucharest

13

A*: From Arad to Bucharest

14

A* algorithm: properties

h is admissible, if for all nodes n: h(n) ≤ h*(n)

A (slightly) more strict condition:

Consistency (monotony):
h is consistent, if for all nodes n:

h(n) ≤ c(n,a,n‘) + h(n‘)
where c(n,a,n‘) are the costs from node n to a successor
node n‘ as a result of the action a

Thesis: If h is consistent, then h is also admissible

15

A* algorithm: properties

Two versions of A*:
� Tree-search based
� Graph-search based

Theorem: A* is optimal if
� h is admissible in case of tree-search based A*
� h is consistent in case of graph-search based A*

16

A* algorithm: Optimality of tree-search form

Thesis: A* is optimal, i.e. the first solution found by A* has
minimal costs

Proof: Assume there exists a goal node G with optimal path
costs f*, but A* has found a different goal G2 with
g(G2) > f*

17

start

n

G G2

A* algorithm: Optimality of tree-search form

Let n be a node on the optimal path from start to G which
has not been expanded. Since h is admissible,

f(n) ≤ f* .
But because n hasn‘t been expanded before G2, it holds that

f(G2) ≤ f(n)
From this it follows that

f(G2) ≤ f*.
Because h(G2) = 0 by definition, it follows that

g(G2) ≤ f*.

to assumption g(G2) > f*. Proof by contradiction.

18

A* algorithm: Optimality of graph -search form

If h is consistent, the values of f=g+h are monotonically
increasing (not strictly).

Let n‘ be a successor node of n. For an action a holds
g(n‘) = g(n) + c(n,a,n‘)

This leads to
f(n‘) = g(n‘)+h(n‘) = g(n) + c(n,a,n‘) + h(n‘) ≥ g(n)+h(n) = f(n)

19

≥≥≥≥

A* algorithm: Optimality of graph -search form

If h is consistent, the values of f=g+h are monotonically
increasing (not strictly).

Let n‘ be a successor node of n. For an action a holds
g(n‘) = g(n) + c(n,a,n‘)

This leads to
f(n‘) = g(n‘)+h(n‘) = g(n) + c(n,a,n‘) + h(n‘) ≥ g(n)+h(n) = f(n)

Now to prove: If a node n was chosen for expansion, then
the optimal path to n has been found

20

≥≥≥≥

A* algorithm: Optimality of graph -search form

Assume there is another cheaper path from start to n.

Then there is a node n‘ on that path with f(n‘) < f(n) because
of monotony of f along any path.

Contradiction to algorithm definiton: n‘ would have been
chosen instead of another node in the same set of frontier
nodes because its costs are lower.

Then, taking h(goal)=0 into account, the function f gives the
true cost for any goal and the costs for all other nodes on
the way are at least as expensive.

21

A* algorithm: Optimality of graph -search form

We can draw a “contour map“ with nodes within a f-cost limit

22

A* algorithm: Properties

� A* expands all nodes with f(n) < C*
– C* are the costs of an optimal path

� Completeness requires that there is only a finite number
of nodes with with f(n) < C*
– True, if step costs > ε > 0 and branching factor b is finite

� No node with f(n) > C* is expanded
� If not all nodes with f(n) < C* are expanded, an algorithms

risks to miss the optimal solution

23

A* algorithm: Properties

� A* is complete
� A* is optimal
� But: Number of configurations still exponential, even with

pruning!
� Time exponential, but drastically reduced
� Space is the major problem

� Variation of A*: IDA* (Iterative deepening A*)
– Pruning based on f-costs (g+h) instead of d
– Because of iteration: no need to keep track of priority queue

24

Summary

� There are optimal and complete search algorithms which
are “much better” than blind search

� However, the state spaces and the complexity is still
exponential

� A* always leads to optimal solutions, but space is a
problem.
– Variations of A* to save space

25

Questions:

Restriction of costs to positive values:
a) Why would an optimal algorithm need to expand the

whole space in case of arbitrary negative costs?
b) Does a restriction to c(n,a,n‘) > min (negative val.) help?

- In case of trees and in case of graphs?

c) Assume there are loops and the world state is the same
after a finite number of actions. What is the optimal
strategy in case of negative path costs for all actions?

d) Are there negative costs in real life?

26

Questions:

True or false?
a) Depth-first expands always at least as many nodes as A*

with an admissible hueristic
b) For the 8-puzzle, h(n) =0 is admissible.
c) A* is not suitable for robotics, because percepts, actions,

and states deal with contiuous values.
d) In chess, a rook (Turm) can move only horizontally or

vertically, but not jump over other chessmen. The
manhatten distance is admissible for a move from A zu B

27

Questions:

In graph-based A*, there can be state spaces with
suboptimal solutions if h is admissible, but not consistent.
Show an example.

28

