Vorlesung Grundlagen der Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems Department of Informatics – I6 Technische Universität München

www6.in.tum.de lafrenz@in.tum.de 089-289-18136 Room 03.07.055

Wintersemester 2012/13

2.11.2012

Grundlagen der Künstlichen Intelligenz – Techniques in Artificial Intelligence

Chapter 3

Solving Problems by Searching: Informed (Heuristic) Search

R. Lafrenz

Wintersemester 2012/13

2.11.2012

What' the problem?

Combinatorial explosion:

- Uninformed search leads to exponential time and can only be solved for small problems
 - 15-puzzle: 10¹³ configurations
 - Rubik's cube: 4×10^{19} configurations
 - 1 million years with 1 turn per second
 - Chess: 10¹²⁰ configurations (asuming ~ 40 moves)

How to solve it?

- Use additional information to reduce complexity
- Choose the node to expand based on an estimation on how fast the goal can be reached

Heuristics and their properties

Make use of domain knowledge:

"more knowledge, less search"

- Domain knowledge can be considered as "rules of thumb"
- Heuristics are simple rules that evaluate nodes with respect to the distance to the goal
- Good heuristics are
 - Good estimators
 - Simple and fast to compute

Best-first Search

- Information about the costs from a given node to the goal:
 - Evaluation function *h*, giving a real number for each node
 - Ideal case:
 - Knowing the correct costs from the node to the goal
 - Simple heuristics:
 - Euklidian distance
 - Manhatten distance
- Modify the generic graph-search algorithm using the heuristics
- When h is correct, i.e. estimation gives the actual costs:
 Follow the path of lowest cost, no need to search

Modify generic graph-search algorithm for best-first search

 function HEURISTIC-SEARCH(problem, h)

 returns
 a solution or an error

 static: open, the initial state (set of nodes)

 closed, the nodes already visited, initally empty set

 forever

 if open is empty then return error

 take a node out of open

 add this node to closed

 if this node contains a goal state then return solution

 expand this node (i.e. take all successors not in closed)

 add successor nodes to open using h

Way of adding successor nodes defined by the heuristics

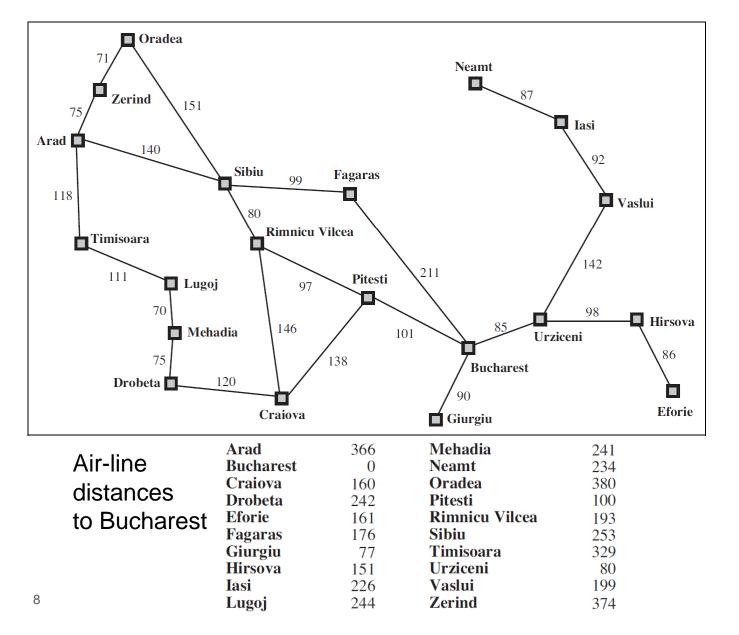
Greedy best-first search

 The "goodness" of a node is determined by the distance to the goal

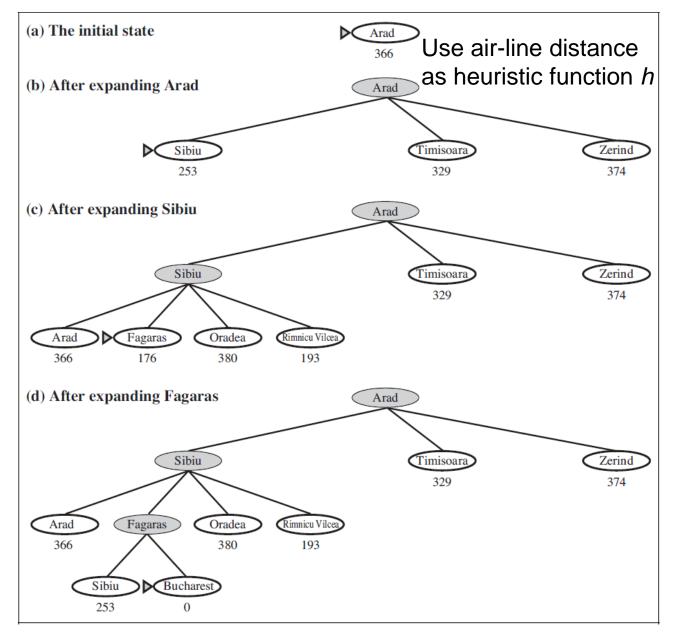
h (*n*) = estimated distance from node n to the goal

- Constraint for h: h(n) = 0, if n is a goal node
- In path planning: Direct distance between two locations

Greedy best-first search: From Arad to Bucharest



Greedy best-first search: From Arad to Bucharest



Heuristics

- In case of greedy search, the evaluation function h is called a heuristic function or simply heuristic
- Name comes from greek ευρισκειν (to find, "Eureka!")
- In AI:
 - Heuristics are fast, but probably incomplete methods for solving problems [Newell, Shaw, Simon 1963]
 - Heuristics are a means to accelerate search in average case
- A heuristic is problem-specific and focused on search

A* algorithm

- Minimizes the estimated path costs
- Combines uniform cost search and best first greedy

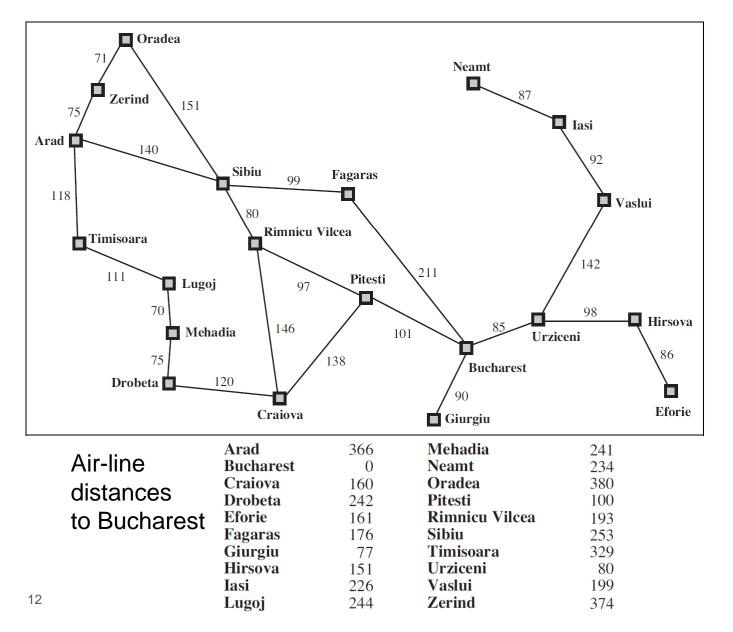
g(n): cost so far to reach nh(n): estimated cost from n to a goal node f(n) = g(n) + h(n): estimated total path cost through n

Let *h** be the true cost of an optimal path from *n* to goal *h* is admissible, if for all nodes *n*:

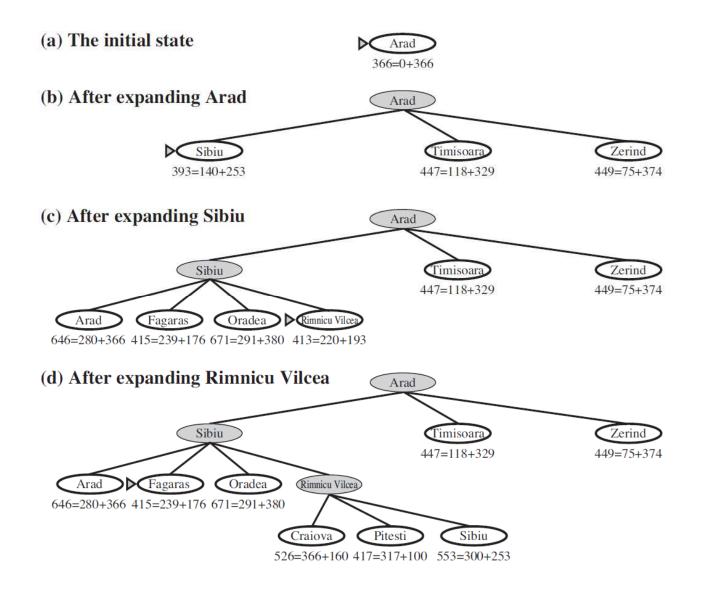
 $h(n) \leq h^*(n)$

h is optimistic, *h* never overestimates the actual costs

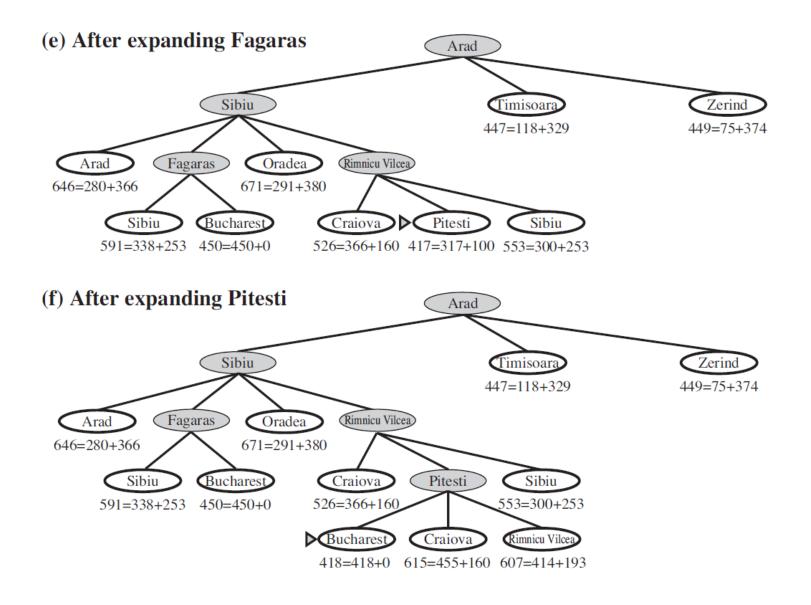
A*: From Arad to Bucharest



A*: From Arad to Bucharest



A*: From Arad to Bucharest



14

A* algorithm: properties

h is admissible, if for all nodes *n*: $h(n) \le h^*(n)$

A (slightly) more strict condition:

```
Consistency (monotony):

h is consistent, if for all nodes n:

h(n) \le c(n,a,n') + h(n')

where c(n,a,n') are the costs from node n to a successor

node n' as a result of the action a
```

Thesis: If *h* is consistent, then *h* is also admissible

A* algorithm: properties

Two versions of A*:

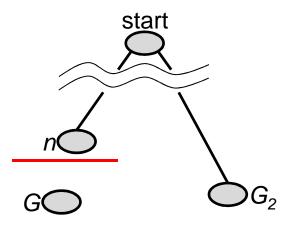
- Tree-search based
- Graph-search based

Theorem: A* is optimal if

- h is admissible in case of tree-search based A*
- h is consistent in case of graph-search based A*

Thesis: A* is optimal, i.e. the first solution found by A* has minimal costs

Proof: Assume there exists a goal node G with optimal path costs f^* , but A* has found a different goal G_2 with $g(G_2) > f^*$



Let *n* be a node on the optimal path from *start* to *G* which has not been expanded. Since *h* is admissible,

$$f(n) \leq f^*$$
.

But because *n* hasn't been expanded before G_2 , it holds that $f(G_2) \le f(n)$

From this it follows that

$$f(G_2) \le f^*.$$

Because $h(G_2) = 0$ by definition, it follows that
 $g(G_2) \le f^*.$

to assumption $g(G_2) > f^*$. Proof by contradiction.

If *h* is consistent, the values of f=g+h are monotonically increasing (not strictly).

Let n' be a successor node of n. For an action a holds g(n') = g(n) + c(n,a,n')

This leads to

$$f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') \ge g(n) + h(n) = f(n)$$

If *h* is consistent, the values of f=g+h are monotonically increasing (not strictly).

Let n' be a successor node of n. For an action a holds g(n') = g(n) + c(n,a,n')

This leads to

$$\frac{f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') \ge g(n) + h(n) = f(n)$$

Now to prove: If a node *n* was chosen for expansion, then the optimal path to *n* has been found

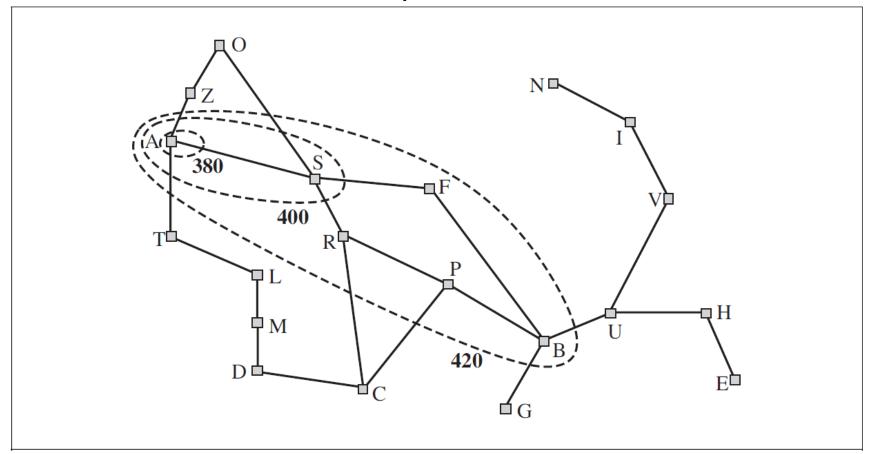
Assume there is another cheaper path from start to n.

Then there is a node n' on that path with f(n') < f(n) because of monotony of f along any path.

Contradiction to algorithm definiton: n' would have been chosen instead of another node in the same set of frontier nodes because its costs are lower.

Then, taking *h*(goal)=0 into account, the function *f* gives the true cost for any goal and the costs for all other nodes on the way are at least as expensive.

We can draw a "contour map" with nodes within a f-cost limit



A* algorithm: Properties

- A* expands all nodes with $f(n) < C^*$
 - C* are the costs of an optimal path
- Completeness requires that there is only a finite number of nodes with with $f(n) < C^*$
 - True, if step costs > ϵ > 0 and branching factor b is finite
- No node with $f(n) > C^*$ is expanded
- If not all nodes with f(n) < C* are expanded, an algorithms risks to miss the optimal solution

A* algorithm: Properties

- A* is complete
- A* is optimal
- But: Number of configurations still exponential, even with pruning!
- Time exponential, but drastically reduced
- Space is the major problem
- Variation of A*: IDA* (Iterative deepening A*)
 - Pruning based on f-costs (g+h) instead of d
 - Because of iteration: no need to keep track of priority queue

Summary

- There are optimal and complete search algorithms which are "much better" than blind search
- However, the state spaces and the complexity is still exponential
- A* always leads to optimal solutions, but space is a problem.
 - Variations of A* to save space

Questions:

Restriction of costs to positive values:

- a) Why would an optimal algorithm need to expand the whole space in case of arbitrary negative costs?
- b) Does a restriction to c(n,a,n') > min (negative val.) help?
 - In case of trees and in case of graphs?
- c) Assume there are loops and the world state is the same after a finite number of actions. What is the optimal strategy in case of negative path costs for all actions?
- d) Are there negative costs in real life?

Questions:

True or false?

- a) Depth-first expands always at least as many nodes as A* with an admissible hueristic
- b) For the 8-puzzle, h(n) = 0 is admissible.
- c) A* is not suitable for robotics, because percepts, actions, and states deal with continuous values.
- d) In chess, a rook (Turm) can move only horizontally or vertically, but not jump over other chessmen. The manhatten distance is admissible for a move from A zu B

Questions:

In graph-based A*, there can be state spaces with suboptimal solutions if *h* is admissible, but not consistent. Show an example.

