
Vorlesung

Grundlagen der
Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics – I6
Technische Universität München

www6.in.tum.de
lafrenz@in.tum.de
089-289-18136
Room 03.07.055

Wintersemester 2012/13 12.11.2012

Grundlagen der Künstlichen Intelligenz – Techniques in Artificial Intelligence

R. Lafrenz Wintersemester 2012/13 12.11.2012

Chapter 6 (3rd ed .)

Constraint Satisfaction Problems

Constraint Satisfaction Problems

Standard search problems:
� State is a "`black box"‘, an arbitrary data structure with goal

test operators, evaluation schema and successor function

CSP:
A state is defined by variables Xi with values from a domain Di

The goal test is a set of constraints that specify the allowable
combinations of values for subsets of variables.

Simple example of a formal representation language.
Allows useful general-purpose algorithms which are more

effective than standard search algorithms.
3

Example: Map -coloring

Variables: WA, NT, Q, NSW, V, SA, T
Domains: Di = {red; yellow; blue}
Constraints: adjacent regions must have different colors
e.g. WA ≠ NT (if the language allows this), or (WA;NT) ∈
{(red; yellow); (red; blue); (yellow; red); (yellow; blue); …}
4

Example: Map -coloring

Solutions are assignments satisfying all constraints, e.g.
{WA = red, NT = yellow, Q = red, NSW = yellow,
V = red, SA = blue, T = yellow}

5

Constraint Graph

Binary CSP: each constraint relates at most two variables
Constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure to
speed up search. E.g. Tasmania is an independent
subproblem!
6

Types of CSPs

Discrete variables
� Finite domains; size d ⇒ O(dn) complete assignments e.g.,

– Boolean CSPs, incl. Boolean satisfyability (NP-complete)

� infinite domains (integers, strings, …)
– e.g., job scheduling, variables are start/end days for each job
– requires a constraint language, e.g. StartJob1 + 5 < StartJob3

– linear constraints solvable, nonlinear undecidable

Continuous variables
� e.g. start/end times for Hubble Telescope observations
� linear constraints are solvable in polynomial time by linear

programming methods

7

Varieties of Constraints

� Unary constraints involve a single variable
– e.g., SA ≠ green

� Binary constraints involve pairs of variables
– e.g., SA ≠WA

� Higher-order constraints involve 3 or more
variables
– e.g., cryptarithmetic column constraints

8

Reducing the Search space with constraints

� In the example: 4 colors possible for each node
� E.g., when assigning SA:=blue, the search space

only needs to consider 3 colors:
35 = 243 ⇒ 25 = 32

Reduction by 87%:

9

Constraints in real applications

� Assignment problems
– e.g., who teaches what class or which robot assembles

which part

� Timetabling problems
– e.g., which class is offered when and where?

� Transportation scheduling

� Factory scheduling
– Different Tasks, each one modelled as variable

Many real-world problems involve real-valued
variables

10

Constraints in real applications

Example: Assembly of a car

� 15 tasks: 2 axes (front, rear), 4 wheels, fix wheel
nuts for all wheels, 4 wheel covers, final inspection

� Assign a variable to each task representing the start time
� Order of tasks, given a max. duration di for each task i

Constraint: T1+d1 ≤ T2

11

Constraints in real applications

E.g. assembly of an axis take 10 min.

AxisF + 10 ≤ WheelRF ; AxisF + 10 ≤ WheelLF
AxisR + 10 ≤ WheelRR ; AxisR + 10 ≤ WheelLR

Assembly of a wheel take 1 min for moving wheel to axis,
2 min to fix the wheel nuts, 1 min to mount the wheel caps

WheelRF + 1 ≤ NutsRF; NutsRF + 2 ≤ CapRF

If there is e.g. only one tool to position the 2 axes, these
steps need to be sequentialized (disjunctive constraint)

(AxisF + 10 ≤ AxisR) or (AxisR + 10 ≤ AxisF)
12

Solution of CSPs: naive approach

Let's start with the straightforward approach, then fix it
States are defined by the values assigned so far

� Initial state: the empty assignment { }
� Successor function: assign a value to an unassigned

variable that does not conflict with current assignment
� fail if no legal assignments

� Goal test: the current assignment is complete

1. Every solution appears at depth n with n variables
� use depth-first search

2. Path is irrelevant, so can also use complete-state
formulation

3. b = (n - l)d at depth l, hence n! · dn leaves

13

Solution of CSPs: Backtracking

Depth first search ist complete for CSPs, since maximally n
operators (assignments of values to variables) are possible.
naive implementation leads to very high branching factor!

Let Di be the set of possible values for Vi . The branching factor
is then b = Σi=1..n Di .

The order of instantiation of variables is irrelevant for the
solution. Therefore, one can select a variable for every
expansion step (non-deterministically), i.e. the branching factor
is (Σi=1..n Di) / n.
After each operator application, one can test if any constraints
are violated. In this case the current node does not need to be
expanded further.

depth first search + test = Backtracking
14

Solution of CSPs: Backtracking

15

Solution of CSPs: Heuristics for CSPs

Minimum remaining values (MRV) first:
reduces branching factor!

Most constraining variable first (alternatively):
i.e. the variable with the most constraints on remaining

variables.
reduces future branching factor

Least constraining value first:
allows more freedom for future decisions

Now, the 1000-Queens problem is solvable!

16

Example: Cryptoarithmetic puzzles

Variables:
Domains:
Constraints:

17

F, T, U, W, R, O, C1, C2, C3
{0; 1; 2; 3; 4; 5; 6; 7; 8; 9}
alldiff (F;T;U;W; R;O)
O + O = R + 10 ∗ C1;
C1 + W + W = U + 10 ∗ C2;
C2 + T + T = O + 10 ∗ C3;
C3 = F

Use of auxiliary variables

Thesis: Each constraint of higher order (i.e., with multiple
variables) in a finite domain can be transformed into a binary
constraint set (i.e., each constraint deals with only 2
variables)

Example for trinary constraint: A + B = C

Sketch of proof: Auxiliary variable AB: pairs in the form (A,B)
Three constraints:

A is the first element of (A,B)
B is the second element of (A,B)
EVAL(ab) = C,

with EVAL(ab) =a+b for each ab ∈ AB
Constraint descriptions with only binary constraints are

possible!
18

Use of auxiliary variables

Thesis: Each constraint of higher order (i.e., with multiple
variables) in a finite domain can be transformed into a binary
constraint set (i.e., each constraint deals with only 2
variables)

Example for trinary constraint: A + B = C

Sketch of proof: Auxiliary variable AB: pairs in the form (A,B)
Three constraints:

A is the first element of (A,B)
B is the second element of (A,B)
EVAL(ab) = C,

with EVAL(ab) =a+b for each ab ∈ AB
Constraint descriptions with only binary constraints are

possible!
19

Forward checking

� Idea:
– Keep track of remaining legal values for unassigned variables
– Terminate search when any variable has no legal values
–

20

21

Forward checking

� Idea:
– Keep track of remaining legal values for unassigned variables
– Terminate search when any variable has no legal values
–

21

Forward checking

� Idea:
– Keep track of remaining legal values for unassigned variables
– Terminate search when any variable has no legal values
–

22

Forward checking

� Idea:
– Keep track of remaining legal values for unassigned variables
– Terminate search when any variable has no legal values
–

23

Constraint propagation

� Forward checking propagates information from assigned
to unassigned variables, but doesn't provide early
detection for all failures:

�

� NT and SA cannot both be blue!
� Constraint propagation repeatedly enforces constraints

locally
24

Constraint propagation

Main idea: local consistency
� Node consistency: all unitary constraints are satisfied

� Arc consistency between Xi and Xj : For each value in Di
exists a value in Dj which fulfills the binary constraint
between Xi and Xj

Example: Arc consistency for the constraint Y = X2 in the
domain {0,1, …, 9}
This leads to Dom(X) = {0,1,2,3} and Dom(Y) = {0,1,4,9}

AC-3 algorithm uses arc consistency
25

AC-3 algorithm

a

26

Example: 8-queen as CSP

� There are 8 variables V1; … ;V8, where Vi represents a queen
in the i-th column.

� Vi can take values from {1; 2; …; 8}, which represents the
row position.

� There are constraints between all pairs of variables which
express the rule that no queen can attack any other queen.

discrete, finite, binary CSP

27

Example: 8-queen as CSP

28

Min-conflicts heuristics:
� Choose a conflicting column
� Choose a field with minimal conflicts (attacks), random

choice between equal possiblities

Min-conflicts was used for scheduling of the Hubble-Telescope.
Reduction of computation time from 3 weeks to 10 minutes!

Using the structure of problems

29

Topological order of the nodes in case of tree-structured CSPs:
� Tree structure leads to linear time

� Now try to reduce problems to trees

Using the structure of problems

30

Reduce graphs to trees
• Delete nodes: Assign values to some variables, so that

remaining variables form a tree

Using the structure of problems

31

Tree decomposition: Devide and conquer

• Each variable in the original problem appears in one of the
sub-problems

• 2 constrained variables have to appear (with the constraint)
in at least one of the sub-problems

• If a variable appears in two sub-problems, it needs to be
present in each sub-problem along the connecting path

Using the structure of problems

32

Summary

� CSPs: state represented by variable-value pairs
� Set of constraints on variables (unary, binary, and higher-

order)

� Backtracking = depth first search + test

� Min-conflicts heuristics are very successful and easy

� Reduction of complexity by reduction to trees instead of
graphs

33

