Vorlesung

Grundlagen der
Klnstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics — 16
Technische Universitat Minchen

wwwe6.in.tum.de
lafrenz@in.tum.de
089-289-18136
Room 03.07.055

Wintersemester 2012/13 12.11.2012 E m

Grundlagen der Kinstlichen Intelligenz — Techniques in Artificial Intelligence

Chapter 6 (3rd ed .)

Constraint Satisfaction Problems

R. Lafrenz Wintersemester 2012/13 12.11.2012 E m

Constraint Satisfaction Problems

Standard search problems:

= State is a " black box™, an arbitrary data structure with goal
test operators, evaluation schema and successor function

CSP:
A state is defined by variables X; with values from a domain D,

The goal test is a set of constraints that specify the allowable
combinations of values for subsets of variables.

Simple example of a formal representation language.

Allows useful general-purpose algorithms which are more
effective than standard search algorithms.

3 &

Example: Map -coloring

Northern
Territory
Western

Australia

Queensland

New
South
Wales

Victoria

Tasmania @

@ (b
Variables: WA, NT, Q, NSW, V, SA, T
Domains: D, = {red; yellow; blue}
Constraints: adjacent regions must have different colors
e.g. WA # NT (if the language allows this), or (WA;NT) [
{(red; yellow); (red; blue); (yellow; red); (yellow; blue); ...}

: &

South
Australia

Example: Map -coloring

Northern

\ Territory

Tasmania @

@ (b
Solutions are assignments satisfying all constraints, e.g.

{WA =red, NT =yellow, Q =red, NSW = yellow,
V =red, SA = blue, T = yellow}

Constraint Graph

Binary CSP: each constraint relates at most two variables
Constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure to
speed up search. E.g. Tasmania is an independent
subproblem!

6 &

Types of CSPs

Discrete variables

* Finite domains; size d = O(d") complete assignments e.g
— Boolean CSPs, incl. Boolean satisfyability (NP-complete)

* infinite domains (integers, strings, ...)
— e.g., Job scheduling, variables are start/end days for each job

— requires a constraint language, e.g. StartJob, + 5 < StartJob,
— linear constraints solvable, nonlinear undecidable

Continuous variables
= e.g. start/end times for Hubble Telescope observations

» |inear constraints are solvable in polynomial time by linear
programming methods

&

Varieties of Constraints

= Unary constraints involve a single variable
— e.g., SA # green

= Binary constraints involve pairs of variables
- e.g.,, SA# WA

= Higher-order constraints involve 3 or more
variables

— e.g., cryptarithmetic column constraints

Reducing the Search space with constraints

* In the example: 4 colors possible for each node

= E.g., when assigning SA:=blue, the search space
only needs to consider 3 colors:

33=243 = 2°=32
Reduction by 87%:

Constraints in real applications

= Assignment problems

— e.g., who teaches what class or which robot assembles
which part

= Timetabling problems
— e.g., which class is offered when and where?

= Transportation scheduling

» Factory scheduling
— Different Tasks, each one modelled as variable

Many real-world problems involve real-valued
variables

10

Constraints in real applications
Example: Assembly of a car

» 15 tasks: 2 axes (front, rear), 4 wheels, fix wheel
nuts for all wheels, 4 wheel covers, final inspection

= Assign a variable to each task representing the start time
= Order of tasks, given a max. duration d, for each task i

Constraint: T,+d, =T,

11

Constraints in real applications

E.g. assembly of an axis take 10 min.

Axisg + 10 s Wheelge ; Axisg + 10 sWheel ¢
Axisg + 10 < Wheelgzg ; Axisg + 10 <Wheel

Assembly of a wheel take 1 min for moving wheel to axis,
2 min to fix the wheel nuts, 1 min to mount the wheel caps

Wheelze + 1 <Nutsyp; Nutsge + 2 <Capge

If there is e.g. only one tool to position the 2 axes, these
steps need to be sequentialized (disjunctive constraint)

(Axisg + 10 < AXISg) Or (Axisg + 10 < AXISE)

—
12

Solution of CSPs: naive approach

Let's start with the straightforward approach, then fix it
States are defined by the values assigned so far

13

Initial state: the empty assignment { }

Successor function: assign a value to an unassigned
variable that does not conflict with current assignment

—> fail if no legal assignments

Goal test: the current assignment is complete

. Every solution appears at depth n with n variables

- use depth-first search

. Path is irrelevant, so can also use complete-state

formulation

. b=(n-r)d at depth , hence n! - d" leaves

Solution of CSPs: Backtracking

Depth first search ist complete for CSPs, since maximally n
operators (assignments of values to variables) are possible.
naive implementation leads to very high branching factor!

Let Di be the set of possible values for Vi . The branching factor
Isthenb = 5_, . D;.

The order of instantiation of variables is irrelevant for the

solution. Therefore, one can select a variable for every
expansion step (non-deterministically), I.e. the branching factor
IS (Zizl..n Di) /n.

After each operator application, one can test if any constraints
are violated. In this case the current node does not need to be
expanded further.

depth first search + test = Backtracking

_
“ X

Solution of CSPs: Backtracking

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment,csp) returns a solution, or
failure
if assignment is complete then return assignment
var + SELECT- UNASSIGNED- VARIABLE(Variables/csp/, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment according to Constraints[csp| then
add { var = value } to assignment
result + RECURSIVE- BACKTRACKING(assignment, csp)
if result + failue then return result
remove { var = value } from assignment
return failure

15

Solution of CSPs: Heuristics for CSPs

Minimum remaining values (MRYV) first:
> reduces branching factor!

Most constraining variable first (alternatively):

.e. the variable with the most constraints on remaining
variables.

reduces future branching factor

Least constraining value first:
allows more freedom for future decisions
Now, the 1000-Queens problem is solvable!

16

Example: Cryptoarithmetic puzzles

T WO @/@_—{{E@R 0
+ 7T W O 'z

FOUR
8 g

Variables: F T,U, W, R, O, C1, C2,C3

Domains: {0;1;2; 3;4,;5;6;7;8; 9}

Constraints: alldiff (F;T;U;W; R;0)
O+0=R+100C1;
Cl+W+W=U+ 10 OCZ;
C2+ T+ T =0+100C3;
C3=F

: L

Use of auxiliary variables

Thesis: Each constraint of higher order (i.e., with multiple
variables) in a finite domain can be transformed into a binary
constraint set (i.e., each constraint deals with only 2
variables)

Example for trinary constraint: A+ B=C

Sketch of proof: Auxiliary variable AB: pairs in the form (A,B)
Three constraints:
A is the first element of (A,B)
B is the second element of (A,B)
EvAaL(ab) = C,
with EVAL(ab) =a+b for each ab [J AB

Constraint descriptions with only binary constraints are
possible!

—
18

Use of auxiliary variables

Thesis: Each constraint of higher order (i.e., with multiple
variables) in a finite domain can be transformed into a binary
constraint set (i.e., each constraint deals with only 2
variables)

Example for trinary constraint: A+ B=C

Sketch of proof: Auxiliary variable AB: pairs in the form (A,B)
Three constraints:
A is the first element of (A,B)
B is the second element of (A,B)
EvAaL(ab) = C,
with EVAL(ab) =a+b for each ab [J AB

Constraint descriptions with only binary constraints are
possible!

—
19

Forward checking

* |dea:
— Keep track of remaining legal values for unassigned variables
— Terminate search when any variable has no legal values

NS

WA NT Q NSW v SA T

20

Forward checking

* |dea:
— Keep track of remaining legal values for unassigned variables
— Terminate search when any variable has no legal values

e

21

WA NT Q NSW v SA T
ENEENEENEENE|ENE|ENEENE
B STEEFEEYEEYE| EEYE

Forward checking

= |dea:

— Keep track of remaining legal values for unassigned variables
— Terminate search when any variable has no legal values

WA NT Q NSW v SA T
ENEENEIETEENFEIENEfEINET"EIETDE
B "EENEEfFEESE "EERYE
] BTN EETE HiETH

22

Forward checking

* |dea:
— Keep track of remaining legal values for unassigned variables
— Terminate search when any variable has no legal values

23

WA NT Q NSW v SA T
ENFEENEIETEENFEINEfEINET"EIETDE
B "EENEEfEESE) "EEDYEH
] BTN EETE 1L
] _JE | ENE

Constraint propagation

24

Forward checking propagates information from assigned
to unassigned variables, but doesn't provide early

detection for all failures:

SSEA SSEa S~

WA

NT

Q

NSW

v

SLIL

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints

locally

Ei

Constraint propagation

25

Main idea: local consistency

Node consistency: all unitary constraints are satisfied

Arc consistency between X;and X; : For each value in D,
exists a value in D; which fulfills the binary constraint
between X; and X

Example: Arc consistency for the constraint Y = X2 in the
domain {0,1, ..., 9}

This leads to Dom(X) = {0,1,2,3} and Dom(Y) = {0,1,4,9}

AC-3 algorithm uses arc consistency

AC-3 algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X;, Xs, ..., X,}
local variables: queue, a queue of arcs, initially all the arcs in ¢csp

while gueue is not empty do
(Xi, X;)+ REMOVE-FIRST(queue)
if RM-INCONSISTENT-VALUES(X;, X;) then
for each X; in NEIGHBORS[X;] do
add (X, X;) to queue

function RM-INCONSISTENT-VALUES(X;, X;) returns true iff remove a value
removed < false
for each zin DomAIN[X;] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy constraint(.X;, X)
then delete z from DOMAIN[X;]; removed « true
return removed

26

Example: 8-queen as CSP

= There are 8 variables V; ... ;Vg, where V, represents a queen
In the i-th column.

= V., can take values from {1, 2; ...; 8}, which represents the
row position.

= There are constraints between all pairs of variables which
express the rule that no queen can attack any other queen.

discrete, finite, binary CSP

_
i X

Example: 8-queen as CSP

Min-conflicts heuristics:
» Choose a conflicting column
* Choose a field with minimal conflicts (attacks), random

choice between equal possiblities

N Dwil

Min-conflicts was used for scheduling of the Hubble-Telescope.

28

Reduction of computation time from 3 weeks to 10 minutes!

r

Using the structure of problems

Topological order of the nodes in case of tree-structured CSPs:
= Tree structure leads to linear time

ze ee

(a) (b)

= Now try to reduce problems to trees

ze H

Using the structure of problems

®‘®'o @
& o
® ®

Reduce graphs to trees

* Delete nodes: Assign values to some variables, so that
remaining variables form a tree

so L

Using the structure of problems

Tree decomposition: Devide and conquer

« Each variable in the original problem appears in one of the
sub-problems

« 2 constrained variables have to appear (with the constraint)
In at least one of the sub-problems

* If a variable appears in two sub-problems, it needs to be
present in each sub-problem along the connecting path

31

Using the structure of problems

32

Summary

33

CSPs: state represented by variable-value pairs

Set of constraints on variables (unary, binary, and higher-
order)

Backtracking = depth first search + test

Min-conflicts heuristics are very successful and easy

Reduction of complexity by reduction to trees instead of
graphs

