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Constraint Satisfaction Problems



Constraint Satisfaction Problems

Standard search problems:
� State is a "`black box"‘, an arbitrary data structure with goal 

test operators, evaluation schema and successor function

CSP:
A state is defined by variables Xi with values from a domain Di

The goal test is a set of constraints that specify the allowable
combinations of values for subsets of variables.

Simple example of a formal representation language.
Allows useful general-purpose algorithms which are more 

effective than standard search algorithms.
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Example: Map -coloring

Variables: WA, NT, Q, NSW, V, SA, T
Domains: Di = {red; yellow; blue}
Constraints: adjacent regions must have different colors
e.g. WA ≠ NT (if the language allows this), or (WA;NT) ∈
{(red; yellow); (red; blue); (yellow; red); (yellow; blue); …}
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Example: Map -coloring

Solutions are assignments satisfying all constraints, e.g.
{WA = red, NT = yellow, Q = red, NSW = yellow,
V = red, SA = blue, T = yellow}
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Constraint Graph

Binary CSP: each constraint relates at most two variables
Constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure to 
speed up search. E.g. Tasmania is an independent 
subproblem!
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Types of CSPs

Discrete variables
� Finite domains; size d  ⇒ O(dn) complete assignments e.g.,

– Boolean CSPs, incl. Boolean satisfyability (NP-complete)

� infinite domains (integers, strings, …)
– e.g., job scheduling, variables are start/end days for each job
– requires a constraint language, e.g. StartJob1 + 5 < StartJob3

– linear constraints solvable, nonlinear undecidable

Continuous variables
� e.g. start/end times for Hubble Telescope observations
� linear constraints are solvable in polynomial time by linear 

programming methods
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Varieties of Constraints

� Unary constraints involve a single variable 
– e.g., SA ≠ green

� Binary constraints involve pairs of variables
– e.g., SA ≠WA

� Higher-order constraints involve 3 or more 
variables
– e.g., cryptarithmetic column constraints
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Reducing the Search space with constraints

� In the example: 4 colors possible for each node
� E.g., when assigning SA:=blue, the search space

only needs to consider 3 colors:
35 = 243   ⇒ 25 = 32

Reduction by 87%:
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Constraints in real applications

� Assignment problems
– e.g., who teaches what class or which robot assembles 

which part

� Timetabling problems
– e.g., which class is offered when and where?

� Transportation scheduling

� Factory scheduling
– Different Tasks, each one modelled as variable

Many real-world problems involve real-valued 
variables
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Constraints in real applications

Example: Assembly of a car

� 15 tasks: 2 axes (front, rear), 4 wheels, fix wheel
nuts for all wheels, 4 wheel covers, final inspection

� Assign a variable to each task representing the start time
� Order of tasks, given a max. duration di for each task i

Constraint: T1+d1 ≤ T2
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Constraints in real applications

E.g. assembly of an axis take 10 min.

AxisF + 10 ≤ WheelRF ; AxisF + 10 ≤ WheelLF
AxisR + 10 ≤ WheelRR ; AxisR + 10 ≤ WheelLR

Assembly of a wheel take 1 min for moving wheel to axis, 
2 min to fix the wheel nuts, 1 min to mount the wheel caps

WheelRF + 1 ≤ NutsRF; NutsRF + 2 ≤ CapRF

If there is e.g. only one tool to position the 2 axes, these
steps need to be sequentialized (disjunctive constraint)

(AxisF + 10 ≤ AxisR ) or (AxisR + 10 ≤ AxisF )
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Solution of CSPs: naive approach

Let's start with the straightforward approach, then fix it
States are defined by the values assigned so far

� Initial state: the empty assignment { }
� Successor function: assign a value to an unassigned 

variable that does not conflict with current assignment
� fail if no legal assignments

� Goal test: the current assignment is complete

1. Every solution appears at depth n with n variables
� use depth-first search

2. Path is irrelevant, so can also use complete-state 
formulation

3. b = (n - l )d at depth l, hence n! · dn leaves
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Solution of CSPs: Backtracking

Depth first search ist complete for CSPs, since maximally n
operators (assignments of values to variables) are possible.
naive implementation leads to very high branching factor! 

Let Di be the set of possible values for Vi . The branching factor 
is then b = Σi=1..n Di .

The order of instantiation of variables is irrelevant for the
solution. Therefore, one can select a variable for every 
expansion step (non-deterministically), i.e. the branching factor 
is (Σi=1..n Di ) / n.
After each operator application, one can test if any constraints
are violated. In this case the current node does not need to be
expanded further. 

depth first search + test = Backtracking
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Solution of CSPs: Backtracking
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Solution of CSPs: Heuristics for CSPs

Minimum remaining values (MRV) first:
reduces branching factor!

Most constraining variable first (alternatively):
i.e. the variable with the most constraints on remaining 

variables.
reduces future branching factor

Least constraining value first:
allows more freedom for future decisions

Now, the 1000-Queens problem is solvable!

16



Example: Cryptoarithmetic puzzles

Variables:
Domains:
Constraints:  
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F, T, U, W, R, O, C1, C2, C3 
{0; 1; 2; 3; 4; 5; 6; 7; 8; 9}
alldiff (F;T;U;W; R;O)
O + O = R + 10 ∗ C1;
C1 + W + W = U + 10 ∗ C2;
C2 +  T +  T  = O + 10 ∗ C3;
C3 = F



Use of auxiliary variables

Thesis: Each constraint of higher order (i.e., with multiple 
variables) in a finite domain can be transformed into a binary
constraint set (i.e., each constraint deals with only 2 
variables)

Example for trinary constraint: A + B = C

Sketch of proof: Auxiliary variable AB: pairs in the form (A,B)
Three constraints: 

A is the first element of (A,B)
B is the second element of (A,B)
EVAL(ab) = C, 

with EVAL(ab) =a+b for each ab ∈ AB
Constraint descriptions with only binary constraints are 

possible!
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Forward checking

� Idea: 
– Keep track of remaining legal values for unassigned variables
– Terminate search when any variable has no legal values
–
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Constraint propagation

� Forward checking propagates information from assigned 
to unassigned variables, but doesn't provide early 
detection for all failures:

�

� NT and SA cannot both be blue!
� Constraint propagation repeatedly enforces constraints 

locally
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Constraint propagation

Main idea: local consistency
� Node consistency: all unitary constraints are satisfied

� Arc consistency between Xi and Xj : For each value in Di
exists a value in Dj which fulfills the binary constraint
between Xi and Xj

Example: Arc consistency for the constraint Y = X2 in the
domain {0,1, …, 9} 
This leads to Dom(X) = {0,1,2,3} and Dom(Y) = {0,1,4,9}

AC-3 algorithm uses arc consistency
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AC-3 algorithm

a
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Example: 8-queen as CSP

� There are 8 variables V1; … ;V8, where Vi represents a queen 
in the i-th column.

� Vi can take values from {1; 2; …; 8}, which represents the 
row position.

� There are constraints between all pairs of variables which 
express the rule that no queen can attack any other queen.

discrete, finite, binary CSP
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Example: 8-queen as CSP
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Min-conflicts heuristics:
� Choose a conflicting column
� Choose a field with minimal conflicts (attacks), random

choice between equal possiblities

Min-conflicts was used for scheduling of the Hubble-Telescope. 
Reduction of computation time from 3 weeks to 10 minutes!



Using the structure of problems
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Topological order of the nodes in case of tree-structured CSPs:
� Tree structure leads to linear time 

� Now try to reduce problems to trees



Using the structure of problems
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Reduce graphs to trees
• Delete nodes: Assign values to some variables, so that

remaining variables form a tree



Using the structure of problems
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Tree decomposition: Devide and conquer

• Each variable in the original problem appears in one of the
sub-problems

• 2 constrained variables have to appear (with the constraint) 
in at least one of the sub-problems

• If a variable appears in two sub-problems, it needs to be
present in each sub-problem along the connecting path



Using the structure of problems
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Summary

� CSPs: state represented by variable-value pairs
� Set of constraints on variables (unary, binary, and higher-

order)

� Backtracking = depth first search + test

� Min-conflicts heuristics are very successful and easy

� Reduction of complexity by reduction to trees instead of
graphs
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