# Vorlesung Grundlagen der Künstlichen Intelligenz

#### Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems

Department of Informatics – I6

Technische Universität München

www6.in.tum.de

lafrenz@in.tum.de

089-289-18136

Room 03.07.055





Grundlagen der Künstlichen Intelligenz – Techniques in Artificial Intelligence

# Chapter 7 (3rd ed.)

# **Logical Agents**



#### **Questions:**

- How was the knowledge represented so far?
- What does a (searching) agent know about the world?
- How is this knowledge applied?
- Where does this knowledge come from?
- Can this knowledge be updated?
  - Implicit vs. explicit representation



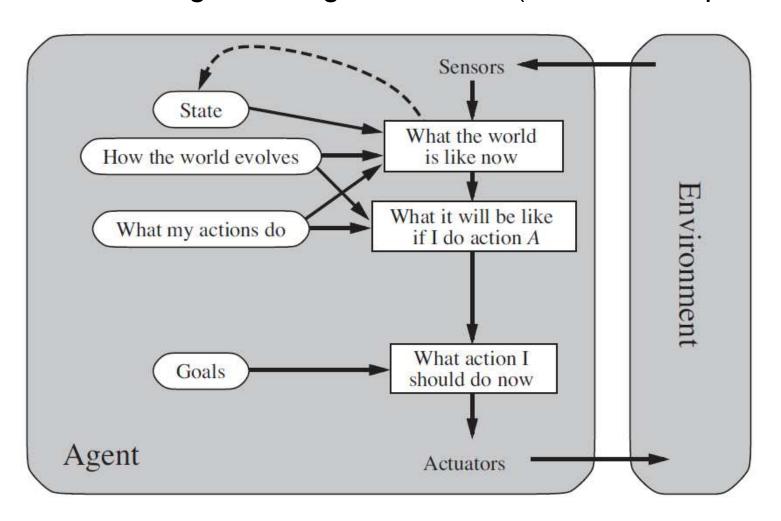
# Logical agents

- Knowledge-based agents with internal representation of knowledge
- Reasoning process to gain new knowledge and to draw conclusions
- Representation schemes (languages)
- A knowledge base is a collection of (formal) sentences
- Two operators on the knowlege base:
  - TELL(KB, sentence)
  - Ask(KB, sentence)



# Logical agents

Reconsider a general agent scheme (see also chapter 2)





# **Logical agents**

- Two operators on the knowlege base:
  - TELL(*KB*, sentence)
  - Ask(*KB*, sentence)



# Logical agent: operation principle

```
function KB-AGENT(percept)
returns an action

persistent: KB, a knowledge base
t, a counter, initially 0 (discrete time)

Tell(KB, Make-Percept-Sentence((percept, t))
action \leftarrow Ask(KB, Make-Action-Query(t)

Tell(KB, Make-Action-Sentence((action, t))
t \leftarrow t + 1
return action
```

- The KB contains initially (*t*=0) the background knowledge
- Choice of abstraction level is essential
  - E.g. for finding the way from A to B, no implementational details are needed



# Declarative vs. procedural knowlege

- There where intensive discussions about the better form of representation, explicitely or implicitely
- In real applications, both are useful hybrid approaches
- Declarative knowledge can often be automatically compiled into procedural code



- Single agent in a 4x4 grid (cave)
- There is a beast called Wumpus
- ... and there are pits
- The agent has a bow and a single arrow
- It can turn left or right and move forward 1 field
- Goal: Search for gold in the cave and escape from the cave
- Simple "game" used to illustrate main concepts of AI



#### PEAS description (cont'd)

#### Performance:

- > +1000 for escaping with the gold from the cave
- > -1000 for being ",eaten" by Wumpus or falling in a pit
- > -1 for each motion
- > -10 for shooting the arrow

#### Environment

- The grid with start position at [1,1]
- > Gold and Wumpus are randomly distributed among the other fields
- > Pits with probability 0.2 on each other field



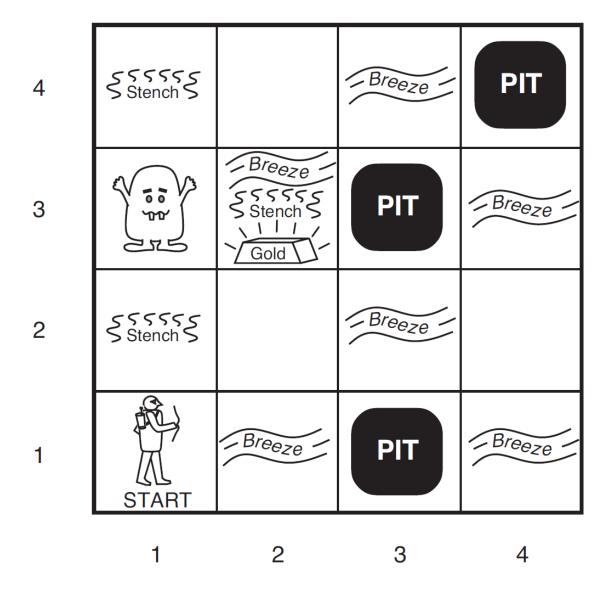
# PEAS description (Performance, Environment, Actuators, Sensors)

#### Actuators:

- > Forward, turns left, right (90 deg.)
- Grab (to get the gold)
- Shoot (shoot arrow in view direction)
- Climb (leave cave, only possible on field [1,1])

#### Sensors

- ➤ At location of the Wumpus + the four grid-neighbors the agent senses a *stench*
- ➤ At the four grid-neighbors of a pit the agent senses a *breeze*
- > At the field where the gold is located, the agent senes a *glitter*
- If the agent runs into a wall, he senses a bump
- > If the agent kills the Wumpus, a scream can be heared in the cave





# **Wumpus world: The environment**

#### Classification of the environment

- Discrete, static, single agent
- Partially observable (only sensing on the current field)
- Sequential (rewards several time steps after an action)
- Agent not able to "win" in all situations (~ 21% unfair)
  - Gold may be in a room with a pit
  - No way to gold without pits





# Wumpus world: Simple graphical representation

# Sensor percepts described as a vector [Stench, Breeze, Glitter, Bump, Scream]

| 1,4       | 2,4       | 3,4 | 4,4 |
|-----------|-----------|-----|-----|
| 1,3       | 2,3       | 3,3 | 4,3 |
| 1,2<br>OK | 2,2       | 3,2 | 4,2 |
| 1,1<br>OK | 2,1<br>OK | 3,1 | 4,1 |

| = Agent         |
|-----------------|
| = Breeze        |
| = Glitter, Gold |
| = Safe square   |
| = Pit           |
| = Stench        |
| = Visited       |
| = Wumpus        |
|                 |

| 1,4            | 2,4              | 3,4    | 4,4 |
|----------------|------------------|--------|-----|
| 1,3            | 2,3              | 3,3    | 4,3 |
| 1,2<br>OK      | 2,2<br>P?        | 3,2    | 4,2 |
| 1,1<br>V<br>OK | 2,1 A<br>B<br>OK | 3,1 P? | 4,1 |

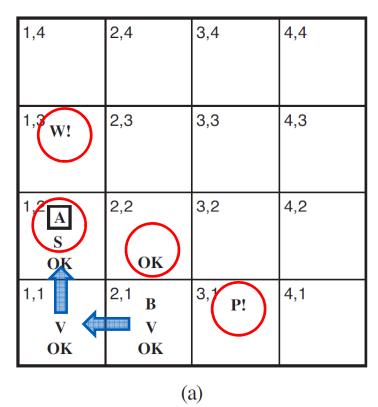
[None, None, None, None]

[None, Breeze, None, None, None]

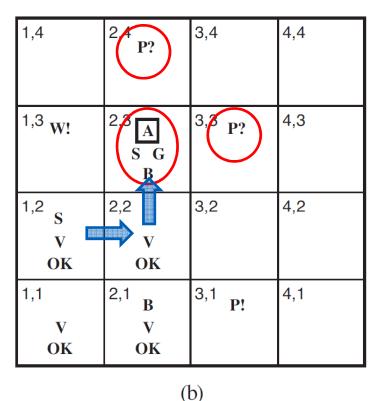
(b)

# Wumpus world: Simple graphical representation

#### Later steps



| A            | = Agent         |
|--------------|-----------------|
| B            | = Breeze        |
| $\mathbf{G}$ | = Glitter, Gold |
| OK           | = Safe square   |
| P            | = Pit           |
| $\mathbf{S}$ | = Stench        |
| $\mathbf{V}$ | = Visited       |
| $\mathbf{W}$ | = Wumpus        |
|              |                 |



After 3rd move with percept [Stench, None, None, None, None]

After 5th move with percept [Stench, Breeze, Glitter, None, None]

# Wumpus world: Reasoning

- Background Knowledge
  - Agent is at [1,1]
  - [1,1] is safe "OK"
  - All perception and action rules
- Gained Knowledge
  - States of fields visited and ist neighbours
- Reasoning based on logical entailments

Conclusions drawn from available knowledge (background + percepts) are correct!



# Logic

- Knowledge base
  - Consists of sentences in the syntax of the representation language
- Syntax
  - Well-formed sentences/formulas
  - ightharpoonup E.g. "x+y = 4" vs. "x4y+="
- Semantics
  - Meaning of a sentence
  - Truth in view of each possible world
  - In classical logic, each sentence is either true or false in a world
- Model is a more precise term for "possible world"



#### **Model**

- A model can be seen as a variable assignment
  - E.g. in x+y=4 each assignment of [x,y] is a model
  - How many models are possible?
- If a sentence  $\alpha$  is true in a model m then we say m satisfies  $\alpha$  or  $\alpha$  is a model of m
- $M(\alpha)$  is the set of all models of  $\alpha$ 
  - i.e., all variable assignments where  $\alpha$  is true



# **Entailment (logical consequence)**

A sentence  $\beta$  is a logical consequence of sentence  $\alpha$ 

$$\alpha \mid = \beta$$

This means that in each model where  $\alpha$  is true,  $\beta$  is also true. In terms of sets

$$\alpha \models \beta$$
 **iff**  $M(\alpha) \subseteq M(\beta)$  (iff: if and only if)

Or, in other words, the statement  $\alpha$  is more strict than the statement  $\beta$ 

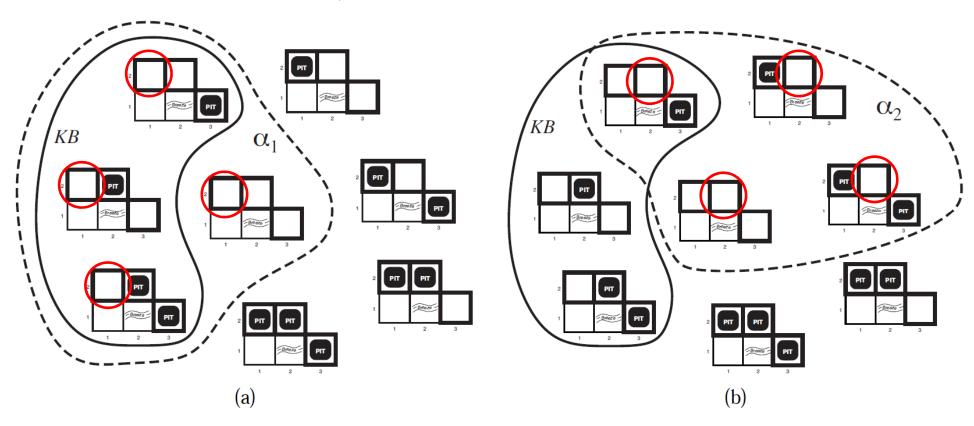
Example from maths:  $x=0 \mid = xy=0$ 



- Assumption: Only pits are of interest at the moment
- Agent perceives nothing in [1,1], moves to [2,1] and perceives there a breeze.
- Question: are pits in [1,2], [2,2], [3,1]  $2^3 = 8$  possible worlds (models)
- Note, that there is no statement about truth when identifying all possible worlds, it's just the collection of all variable assignments.



Solid line: models consistent with first 2 percepts, i.e. the KB is true, or each sentence in the KB is true



(a)  $\alpha_1$ : No pit at [1,2]

(b)  $\alpha_2$ : no pit at [2,2]

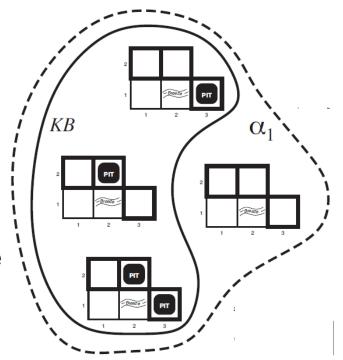


In each model, where KB is true,  $\alpha_1$  is also true

KB 
$$\mid = \alpha_1$$
 (no pit at [1,2])

$$M(KB) \subseteq M(\alpha_1)$$

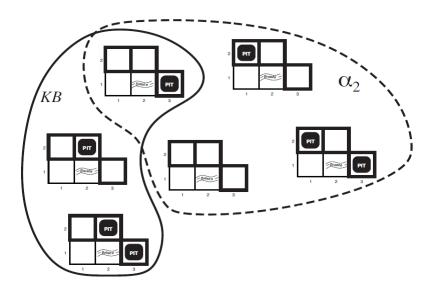
Model checking, test whether  $\alpha$  is true for all models where KB is true





On the other hand, in some of the models where KB is true,  $\alpha_2$  is false, i.e. KB  $\neq \alpha_2$ 

The agent is not able to conclude, that there is *no* pit at [2,2], but also not able to conclude that there *is* a pit at [2,2]





#### Formal inference

If an inference algorithm i is able to derive  $\alpha$  from KB, we write KB |-i|

#### Soundness / Correctness

- Property of maintaining truth
- Only derivable sentences are derived

#### Completeness

- The algorithms is able to derive all derivable sentences
- Compare with completeness of search algorithms,
   e.g. depth first search



#### Formal inference

If an inference algorithm i is able to derive  $\alpha$  from KB, we write KB |-i|

#### Soundness / Correctness

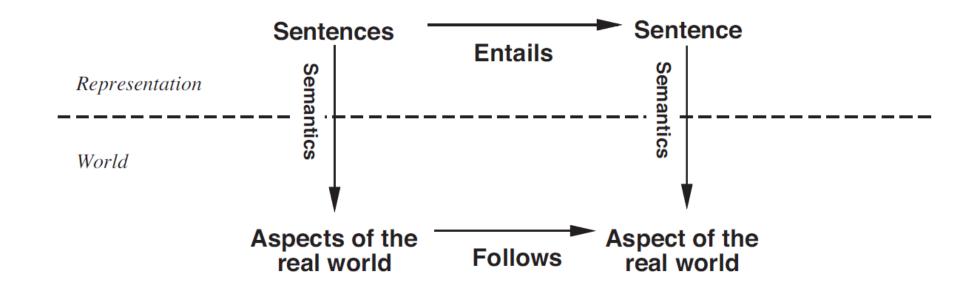
- Property of maintaining truth
- Only derivable sentences are derived

#### Completeness

- The algorithms is able to derive all derivable sentences
- Compare with completeness of search algorithms,
   e.g. depth first search



# **Syntax and semantics**



If a KB is true in the real world (and the inference is correct), then the derived sentences are also true in the real world



# **Symbol grounding**

How do we know that a KB is true in the real world?

- Perceptions tell us the truth
- We assume that the a priori knowledge is also true

Complex problem in real applications



# **Propositional logic (PL)**

#### Syntax:

- Atomic sentences: symbols TRUE, FALSE, variables
- Composite sentences with logical operators
- Grammer in Backus-Naur-Form (BNF)

```
Sentence \rightarrow Atomic Sentence | Complex Sentence Atomic Sentence \rightarrow TRUE | FALSE | P | Q | R | ...

Complex Sentence \rightarrow (Sentence) | [Sentence] |

¬ Sentence |

(Sentence \land Sentence |

(Sentence \lor Sentence) |

(Sentence \Rightarrow Sentence) |

(Sentence \Rightarrow Sentence) |

(Sentence \Leftrightarrow Sentence)

Operator sequence: \neg, \land, \lor, \Rightarrow, \Leftrightarrow
```



# **Propositional logic (PL)**

#### Semantics:

- Truth values for each symbol ~> model
- ¬P is true **iff** P is false in m
- $P \land Q$  is true **iff** P and Q are true in m

**-** ...

#### How many functions for 2 variables are possbile?

2 variables ~> 4 states

4 states individually evaluating to true, false ~> 24=16 possible functions



# **Propositional logic (PL)**

#### Truth tables for some functions

| P     | Q     | ¬P    | $\mathbf{P} \wedge \mathbf{Q}$ | $\mathbf{P}\vee\mathbf{Q}$ | $\mathbf{P}\Rightarrow\mathbf{Q}$ | P⇔Q   |
|-------|-------|-------|--------------------------------|----------------------------|-----------------------------------|-------|
| false | false | true  | false                          | false                      | true                              | true  |
| false | true  | true  | false                          | true                       | true                              | false |
| true  | false | false | false                          | true                       | false                             | false |
| true  | true  | false | true                           | true                       | true                              | true  |



# A simple KB for the Wumpus world

#### Rules

- P<sub>x,y</sub> is true if there is a pit at [x,y]
- W<sub>x,y</sub> is true if Wumpus is at [x,y]
- B<sub>x,y</sub> is true if the agent feels a breeze at [x,y]
- S<sub>x,y</sub> is true if the agent perceives a stench at [x,y]

#### Facts:

- $R_1$ :  $\neg P_{1,1}$  There is no pit at [1,1]
- $\blacksquare R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$
- $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,1} \vee P_{3,1})$

These facts are true in all worlds



# **KB** after the frist 2 perceptions

- $R_4$ :  $\neg B_{1,1}$  There is no breeze at [1,1]
- R<sub>5</sub>: B<sub>2,1</sub>

- How to answer to specific questions, such as  $KB \models P_{2,2}$ ?
- Simple inference mechanism



# **Truth-table based reasoning**

$$KB = P_{2,2}$$
?

| $B_{1,1}$ | $B_{2,1}$ | $P_{1,1}$ | $P_{1,2}$ | $P_{2,1}$ | $P_{2,2}$ | $P_{3,1}$ | $R_1$ | $R_2$ | $R_3$ | $R_4$ | $R_5$ | KB          |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------|-------|-------|-------|-------|-------------|
| false     | true  | true  | true  | true  | false | false       |
| false     | false     | false     | false     | false     | false     | true      | true  | true  | true  | true  | false | false       |
|           | ÷         | :         | ÷         | :         | ÷         | ÷         | :     | i     | :     | ÷     | :     | ÷           |
| false     | true      | false     | false     | false     | false     | false     | true  | true  | false | true  | true  | false       |
| false     | true      | false     | false     | false     | false     | true      | true  | true  | true  | true  | true  | <u>true</u> |
| false     | true      | false     | false     | false     | true      | false     | true  | true  | true  | true  | true  | <u>true</u> |
| false     | true      | false     | false     | false     | true      | true      | true  | true  | true  | true  | true  | <u>true</u> |
| false     | true      | false     | false     | true      | false     | false     | true  | false | false | true  | true  | false       |
|           | ÷         | :         | i         | :         | :         | :         | :     |       | :     | ÷     | :     | :           |
| true      | false | true  | true  | false | true  | false       |



# **Summary**

- Logics as formal representation for knowledge
- Syntax and semantics
- Models (possible worlds)

