## Vorlesung

## Grundlagen der

## Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics - I6
Technische Universität München
www6.in.tum.de
lafrenz@in.tum.de
089-289-18136


Room 03.07.055

## Chapter 7,8 (3rd ed.)

## Propositional and Frist-Order Logic

## From the last lecture we know

- Propositional Logic
- Restrictions to e.g. Horn Clauses
- Proof methods:
- Resolution
- Forward/Backward Chaining
- DPLL algorithm
- WalkSAT algorithm


## Hard satisfiability problems

- Consider random 3-CNF sentences (with at most 3 variables per clause) e.g.,
$(\neg D \vee \neg B \vee C) \wedge(B \vee \neg A \vee \neg C) \wedge(\neg C \vee \neg B \vee E) \wedge$ $(E \vee \neg D \vee B) \wedge(B \vee E \vee \neg C)$

Analyse "hardness" of satisfiability problem using
$m=$ number of clauses
$n=$ number of symbols

- Hard problems seem to cluster near $m / n=4.3$ (critical point)


## Hard satisfiability problems



## Hard satisfiability problems



- Median runtime for 100 satisfiable random 3CNF sentences, $n=50$


## Inference-based agents in the wumpus world

A wumpus-world agent using propositional logic:

$$
\begin{array}{ll}
\neg P_{1,1} & 1 \\
\neg W_{1,1} & 1 \\
B_{x, y} \Leftrightarrow\left(P_{x, y+1} \vee P_{x, y-1} \vee P_{x+1, y} \vee P_{x-1, y}\right) & 16 \\
S_{x, y} \Leftrightarrow\left(W_{x, y+1} \vee W_{x, y-1} \vee W_{x+1, y} \vee W_{x-1, y}\right) & 16 \\
W_{1,1} \vee W_{1,2} \vee \ldots \vee W_{4,4} & 1 \\
\neg W_{1,1} \vee \neg W_{1,2} & \\
\neg W_{1,1} \vee \neg W_{1,3} & 120=\left(16^{2}-16\right) / 2
\end{array}
$$

- 64 distinct proposition symbols (16 x P, W, B, S)
- 155 sentences


## function PL-WUmpus-Agent ( percept) returns an action

 inputs: percept, a list, [stench,breeze, glitter]static: $K B$, initially containing the "physics" of the wumpus world
$x, y$, orientation, the agent's position (init. $[1,1]$ ) and orient. (init. right) visited, an array indicating which squares have been visited, initially false action, the agent's most recent action, initially null plan, an action sequence, initially empty
update $x, y$,orientation, visited based on action
if stench then $\operatorname{Tell}\left(K B, S_{x, y}\right)$ else $\operatorname{Tell}\left(K B, \neg S_{x, y}\right)$
if breeze then $\operatorname{TelL}\left(K B, B_{x, y}\right)$ else $\operatorname{Tell}\left(K B, \neg B_{x, y}\right)$
if glitter then action $\leftarrow$ grab
else if plan is nonempty then action $\leftarrow \mathrm{POP}($ plan $)$
else if for some fringe square $\left[i_{i, j}\right], \operatorname{Ask}\left(K B_{,}\left(\neg P_{i, j} \wedge \neg W_{i, j}\right)\right)$ is true or
for some fringe square $[i, j], \operatorname{Ask}\left(K B,\left(P_{i, j} \vee W_{i, j}\right)\right)$ is false then do plan $\leftarrow \mathrm{A}^{*}$-Graph-SEARCh $($ Route- $\mathrm{PB}([x, y]$, orientation, $[i, j]$,visited $))$ action $\leftarrow \operatorname{Pop}($ plan $)$
else action $\leftarrow$ a randomly chosen move
return action

## Expressiveness limitation of propositional logic

- KB contains "physics" sentences for every single square
- For every time $t$ and every location $[x, y]$ :
$L_{x, y}^{\mathrm{t}} \wedge$ FacingRight $^{\mathrm{t}} \wedge$ Forward $^{\mathrm{t}} \Rightarrow L_{\mathrm{x}+1, \mathrm{y}}^{\mathrm{t}+1} \wedge \neg L_{\mathrm{x}, \mathrm{y}}^{\mathrm{t} 1}$
- Rapid proliferation of clauses
- Check for danger in a field:

$$
O K_{x, y}^{\mathrm{t}} \Leftrightarrow \neg P_{x, y} \wedge \neg\left(W_{x, y} \wedge \text { WumpusAlive }^{\mathrm{t}}\right)
$$

## Pros and cons of propositional logic

© Propositional logic is declarative
© Propositional logic allows partial/disjunctive/negated information

- (unlike most data structures and databases)
© Propositional logic is compositional:
- meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
() Meaning in propositional logic is context-independent
- (unlike natural language, where meaning depends on context)

BUT:
© Propositional logic has very limited expressive power

- (unlike natural language)
- E.g., cannot say "pits cause breezes in adjacent squares"
- except by writing one sentence for each square


## First-order logic

- Whereas propositional logic assumes the world contains facts,
- First-Order Logic (like natural language) assumes the world contains
- Objects: people, houses, numbers, colors, baseball games, ...
- Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
- Functions: father of, best friend, one more than, plus, ...


## Models for FOL: Example



## Syntax of FOL: Basic elements

- Constants: KingJohn, 2, TUM,...
- Predicates: Brother, >,...
- Functions: Sqrt, LeftLegOf,...
- Variables: $\quad x, y, a, b, \ldots$
- Connectives: $\neg, \Rightarrow, \wedge, \vee, \Leftrightarrow$
- Equality: =
- Quantifiers: $\quad \forall, \exists$


## Atomic sentences

Atomic sentence $=$ predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ or term $_{1}=$ term $_{2}$

Term $=$ function $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ or constant or variable

Examples:

- Brother(KingJohn,RichardTheLionheart)
- > (Length(LeftLegOf(Richard)),

Length(LeftLegOf(KingJohn)))

## Complex sentences

- Complex sentences are made from atomic sentences using connectives

$$
\neg S, S_{1} \wedge S_{2}, S_{1} \vee S_{2}, S_{1} \Rightarrow S_{2}, S_{1} \Leftrightarrow S_{2}
$$

E.g. Sibling(KingJohn,Richard) $\Rightarrow$ Sibling(Richard,KingJohn)

$$
\begin{aligned}
& >(1,2) \vee \leq(1,2) \\
& >(1,2) \wedge \neg>(1,2)
\end{aligned}
$$

## First-Order-Logic: Syntax in BNF

```
    Sentence }->\mathrm{ AtomicSentence | ComplexSentence
    AtomicSentence }->\mathrm{ Predicate | Predicate(Term, ...) | Term = Term
    ComplexSentence }->\mathrm{ (Sentence ) | [ Sentence ]
        \negSentence
        Sentence ^ Sentence
        Sentence v Sentence
        Sentence }=>\mathrm{ Sentence
        Sentence \Leftrightarrow}\mathrm{ Sentence
        Quantifier Variable, ... Sentence
        Term -> Function(Term, ...)
            Constant
            Variable
    Quantifier }->\mathrm{ V | ヨ
    Constant }->A|\mp@subsup{X}{1}{}|\mathrm{ John | ...
    Variable }->a|x|s|
    Predicate }->\mathrm{ True | False | After | Loves | Raining | ...
    Function -> Mother | LeftLeg | ...
Operator Precedence : ᄀ, =, ^, \vee, =>, 
```


## Truth in first-order logic

- Sentences are true (a model) or false with respect to an an interpretation
- Interpretation specifies referents for constant symbols $\rightarrow \quad$ objects predicate symbols $\rightarrow \quad$ relations function symbols $\rightarrow \quad$ functional relations
- An atomic sentence predicate(term ${ }_{1}, \ldots$, term $\left._{n}\right)$ is true iff the objects referred to by term ${ }_{1}, \ldots$, term $_{n}$ are in the relation referred to by predicate


## Universal quantification

- $\forall<$ variables> <sentence>

Everyone at TUM is smart:
$\forall x \operatorname{At}(x, T U M) \Rightarrow \operatorname{Smart}(x)$

- $\forall x P$ is true in a model $m$ iff $P$ is true with $x$ being each possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of $P$

```
    At(KingJohn,TUM) }=>\mathrm{ Smart(KingJohn)
^ At(Richard,TUM) => Smart(Richard)
^ At(TUM,TUM) =>Smart(TUM)
^ ...
```


## A common mistake to avoid

- Typically, $\Rightarrow$ is the main connective with $\forall$
- Common mistake: using $\wedge$ as the main connective with $\forall$ :
$\forall x$ At $(x, T U M) \wedge$ Smart $(x)$
means "Everyone is at TUM and everyone is smart"


## Existential quantification

- $\exists<$ variables> <sentence>
- Someone at TUM is smart:
- $\exists x \operatorname{At}(\mathrm{x}, \mathrm{TUM}) \wedge \operatorname{Smart}(\mathrm{x}) \$$
- $\exists x P$ is true in a model $m$ iff $P$ is true with $x$ being some possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of $P$

```
            At(KingJohn,TUM) ^ Smart(KingJohn)
\vee At(Richard,TUM) ^ Smart(Richard)
v At(TUM,TUM) ^ Smart(TUM)
v ..
```


## Another common mistake to avoid

- Typically, $\wedge$ is the main connective with $\exists$
- Common mistake: using $\Rightarrow$ as the main connective with $\exists$ :

$$
\exists x \operatorname{At}(x, \mathrm{TUM}) \Rightarrow \operatorname{Smart}(\mathrm{x})
$$

is true if there is anyone who is not at TUM!

## Properties of quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$
- $\exists x \exists y$ is the same as $\exists y \exists x$
- $\exists x \forall y$ is not the same as $\forall y \exists x$
- $\exists x \forall y$ Loves $(x, y)$
- "There is a person who loves everyone in the world"
- $\forall y \exists x$ Loves( $x, y$ )
- "Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other
- $\forall x$ Likes(x,IceCream) $\neg \exists x \neg$ Likes(x,IceCream)
- $\exists x$ Likes(x,Broccoli) $\neg \forall x \neg$ Likes(x,Broccoli)


## De Morgan Rules

## Quantified

- $\forall \mathrm{x} \neg \mathrm{P} \equiv \neg \exists \mathrm{x} P$
- $\neg \forall x P \equiv \exists x \neg P$
- $\forall x P \equiv \neg \exists x \neg P$
- $\exists \mathrm{x} P \equiv \neg \forall \mathrm{x} \neg \mathrm{P}$

Not quantified
$\neg(\mathrm{P} \vee \neg \mathrm{Q}) \equiv \neg \mathrm{P} \wedge \mathrm{Q}$
$\neg(P \wedge Q) \equiv \neg P \vee \neg Q$
$P \wedge Q \quad \equiv \neg(\neg P \vee \neg Q)$
$P \vee Q \quad \equiv \neg(\neg P \wedge \neg Q)$

## Equality

- term $_{1}=$ term $_{2}$ is true under a given interpretation if and only if term and $_{1}$ term 2 refer to the same object
- E.g., definition of Sibling in terms of Parent:

$$
\begin{aligned}
& \forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow[\neg(x=y) \wedge \exists m, f \neg(m=f) \wedge \\
& \quad \operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y)]
\end{aligned}
$$

## Possible models

- Language with 2 constant symbols and 1 binary relation

- Up to 6 objects: 137.506.194.466 possibilities


## Using FOL

The kinship domain:

- Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Leftrightarrow \operatorname{Sibling}(x, y)$
- One's mother is one's female parent
$\forall \mathrm{m}, \mathrm{c} \operatorname{Mother}(\mathrm{c})=\mathrm{m} \Leftrightarrow($ Female $(\mathrm{m}) \wedge \operatorname{Parent}(m, c))$
- "Sibling" is symmetric
$\forall x, y$ Sibling $(x, y) \Leftrightarrow$ Sibling $(y, x)$


## Using FOL - defining exact semantics

Write the sentence
"Richard has 2 brothers, John and Geoffrey" in FOL
Brother(John, Richard) ^Brother(Geoffrey, Richard)

- Is this enough?
- What if Geoffrey = John?

Add $\wedge$ (John $\neq$ Geoffrey)

- What if there are more brothers?

Brother(John, Richard) ^ Brother(Geoffrey, Richard)
$\wedge$ (John $=$ Geoffrey)
$\wedge(\forall x$ Brother $(\mathrm{x}$, Richard $) \Rightarrow(\mathrm{x}=$ John $\vee \mathrm{x}=$ Geoffrey $)$

## Using FOL - database semantics

Reconsider set of possible models


- Unique identities (John $\neq$ Geoffrey is implicit)
- Closed-world assumption (no constants not in the KB)

The number of possible models is reduced to $2^{4}=16$
Database semantics are used in logic programming languages

## Using FOL

The set domain:

- $\forall \mathrm{s} \operatorname{Set}(\mathrm{s}) \Leftrightarrow(\mathrm{s}=\{ \}) \vee\left(\exists \mathrm{x}, \mathrm{s}_{2} \operatorname{Set}\left(\mathrm{~s}_{2}\right) \wedge \mathrm{s}=\left\{\mathrm{x} \mid \mathrm{s}_{2}\right\}\right)$
- $\neg \exists \mathrm{x}, \mathrm{s}\{\mathrm{x} \mid \mathrm{s}\}=\{ \}$
- $\forall x, s \quad x \in s \Leftrightarrow s=\{x \mid s\}$
- $\left.\forall x, s \quad x \in s \Leftrightarrow\left[\exists y, s_{2}\right\}\left(s=\left\{y \mid s_{2}\right\} \wedge\left(x=y \vee x \in s_{2}\right)\right)\right]$
- $\forall \mathrm{s}_{1}, \mathrm{~s}_{2} \quad \mathrm{~s}_{1} \subseteq \mathrm{~s}_{2} \Leftrightarrow\left(\forall \mathrm{xx} \in \mathrm{s}_{1} \Rightarrow \mathrm{x} \in \mathrm{s}_{2}\right)$
- $\forall \mathrm{s}_{1}, \mathrm{~s}_{2} \quad\left(\mathrm{~s}_{1}=\mathrm{s}_{2}\right) \Leftrightarrow\left(\mathrm{s}_{1} \subseteq \mathrm{~s}_{2} \wedge \mathrm{~s}_{2} \subseteq \mathrm{~s}_{1}\right)$
- $\forall \mathrm{x}, \mathrm{s}_{1}, \mathrm{~s}_{2} \quad \mathrm{x} \in\left(\mathrm{s}_{1} \cap \mathrm{~s}_{2}\right) \Leftrightarrow\left(\mathrm{x} \in \mathrm{s}_{1} \wedge \mathrm{x} \in \mathrm{s}_{2}\right)$
- $\forall \mathrm{x}, \mathrm{s}_{1}, \mathrm{~s}_{2} \quad \mathrm{x} \in\left(\mathrm{s}_{1} \cup \mathrm{~s}_{2}\right) \Leftrightarrow\left(\mathrm{x} \in \mathrm{s}_{1} \vee \mathrm{x} \in \mathrm{s}_{2}\right)$


## Interacting with FOL KBs

- Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at $t=5$ :

Tell(KB,Percept([Smell,Breeze,None],5))
Ask(KB, ヨa BestAction(a,5))

- I.e., does the KB entail some best action at $t=5$ ?
- Answer: Yes, \{a/Shoot\} $\leftarrow$ substitution (binding list)
- Given a sentence $S$ and a substitution $\sigma$,
- So denotes the result of plugging $\sigma$ into $S$; e.g.,
$S$ = Smarter $(x, y)$
$\sigma=\{x /$ Hillary, $y /$ Bill $\}$
S $\sigma=$ Smarter(Hillary,Bill)
- Ask(KB,S) returns some/all $\sigma$ such that $K B=\sigma$


## Knowledge base for the wumpus world

- Perception
- $\forall \mathrm{t}, \mathrm{s}, \mathrm{b} \operatorname{Percept([s,b,Glitter],\mathrm {t})} \Rightarrow \operatorname{Glitter}(\mathrm{t})$
- "Reflex"
- $\forall \mathrm{t}$ Glitter( t ) $\Rightarrow$ BestAction(Grab,t)


## Deducing hidden properties

- $\forall \mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{b} \operatorname{Adjacent}([\mathrm{x}, \mathrm{y}],[\mathrm{a}, \mathrm{b}]) \Leftrightarrow$

$$
[a, b] \in\{[x+1, y],[x-1, y],[x, y+1],[x, y-1]\}
$$

Properties of squares:

- $\forall \mathrm{s}, \mathrm{t} \operatorname{At}($ Agent, $\mathrm{s}, \mathrm{t}) \wedge$ Breeze $(\mathrm{t}) \Rightarrow \operatorname{Breezy}(\mathrm{s})$

Squares are breezy near a pit:

- $\forall$ s Breezy(s) $\Leftrightarrow \exists \mathrm{F}$ Adjacent( $\mathrm{r}, \mathrm{s}$ ) $\wedge \operatorname{Pit}(\mathrm{r})$
- Diagnostic rule---infer cause from effect $\forall \mathrm{s}$ Breezy(s) $\Rightarrow \exists \mathrm{F}$ Adjacent(r,s) $\wedge \operatorname{Pit}(\mathrm{r})$
- Causal rule---infer effect from cause $\forall r \operatorname{Pit}(\mathrm{r}) \Rightarrow[\forall \mathrm{s} \operatorname{Adjacent}(\mathrm{r}, \mathrm{s}) \Rightarrow \operatorname{Breezy}(\mathrm{s})]$

Consideration of time
$\forall \mathrm{t} \operatorname{HaveArrow}(\mathrm{t}+1) \Leftrightarrow \operatorname{HaveArrow}(\mathrm{t}) \wedge \neg \operatorname{Action}($ Shoot, t$))$

## Knowledge engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base

## Summary

- First-order logic:
- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers
- Increased expressive power: sufficient to define wumpus world including "hidden properties" such as "hasArrow"

