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Logics



From last lecture we know

� Wumpus world

� Propositional Logic with syntax and semantics

� Truth-table approach for proofs
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Inference by enumeration

Depth-first enumeration of all models is sound and complete 

For n symbols, time complexity is O(2n), 
space complexity is O(n)
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Logical equivalence

� Two sentences are logically equivalent if and only if they 
are true in same models: α ≡ ß iff  α╞ β and β╞ α
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Terminology

� Countable alphabet Σ of consisting of  A, B, C, …

� Atom: atomic sentence, i.e. a symbol from the alphabet

� Literal: (possibly negated) atomic sentence, e.g. A, ¬B

� Clause: Disjunction of literals, e.g. (A ∨ ¬B ∨ C)
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Validity and satisfiability

� A sentence is valid (tautology) if it is true in all models,
e.g., True,  A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

� A sentence is satisfiable if it is true in some model
e.g., A∨ B, C

� A sentence is unsatisfiable if it is true in no models
e.g., A∧¬A

� Validity is connected to inference via the Deduction Theorem:
KB ╞ α   if and only if    (KB ⇒ α) is valid

� Satisfiability is connected to inference via:

KB ╞ α if and only if (KB ∧¬α) is unsatisfiable
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Proof methods

Proof methods divide into (roughly) two kinds:
� Application of inference rules 

– Legitimate (sound) generation of new sentences from existing 
ones

– Proof = a sequence of inference rule applications
– Algorithms can use inference rules as operators in a standard 

search algorithm
– Typically require transformation of sentences into a normal form

� Model checking
– truth table enumeration (always exponential in n)
– improved backtracking, e.g., Davis-Putnam-Logemann-Loveland 

(DPLL) algorithm
– heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms
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Normal forms

Conjunctive normal form (CNF):
The sentence consists of a conjunction of disjunctions of 

literals li,j , i.e. it has the following form:

e.g., (A ∨ B ∨ ¬C) ∧ (¬D ∨ B) ∧ (E ∨ C ∨ F) 

Disjunctive normal form (DNF):
The sentence consists of a disjunction of conjunctions of 

literals li,j , i.e. it has the following form:

e.g., (A ∧ B ∧ ¬C) ∨ (¬D ∧ B) ∨ (E ∧ C ∧ F) 
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Normal forms - properties

� For all sentences, there is at least one equivalent 
sentence in CNF and DNF.

� A sentence in DNF is satisfiable iff a disjunction is 
satisfiable.

� A sentence in KNF is valid iff every conjunction is valid.
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Construction of CNF sentences

1. Eliminate ⇒ and ⇔ :    A ⇒ B     ~>   (¬A ∨ B) 
2. Move ¬ to the inside:  ¬(A ∧ B)   ~>   (¬A ∨ ¬B) 
3. Distribute ∨ over ∧ : (A ∧ B) ∨ C  ~>   (A ∨ C) ∧ (B ∨ C) 
4. Simplify: (A ∨ A)     ~>   A 

The result is a conjunction of disjunction of literals.

� An analogous procedure transforms any sentence into an 
equivalent sentence in DNF.

� Sentences can be expanded exponentially during the 
transformation.
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Inference rules

Modus ponens Disjunction Introduction
A ⇒ B, A Ai

B A1 ∨ A2 ∨ A3 ∨ … ∨ An

Conjunction Elimination
A1 ∧ A2 ∧ A3 ∧ … ∧ An

Ai

Conjunction Introduction
A1, A2, A3, …, An

A1 ∧ A2 ∧ A3 ∧ … ∧ An
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Inference rules - Resolution

Unit resulotion
A ∨ B, ¬A

B

Resolution
A ∨ B, ¬B ∨ C

A ∨ C

or, more general
A1 ∨ A2 ∨ … ∨ An ,   ¬A1 ∨ B2 ∨ … ∨ Bn

A2 ∨ … ∨ An ∨ B2 ∨ … ∨ Bn
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Proof by Resolution - Idea

� We now want to study a deduction technique that does 
not rely on explicitly testing all interpretations.

� Idea: You try to show that a set of sentences is 
unsatisfiable.

� However: It is required that all sentences are given in 
CNF.

� But: In most cases, the sentences are close to their CNF 
(and there is a quick transformation that preserves 
satisfyability).

� Nevertheless: In the worst case, this deduction technique 
also requires an exponential amount of time (probably, 
you cannot avoid this).
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Proof by Resolution

To prove that KB  |= A , show that (KB ∧ ¬A) is unsatisfiable

Use the inference rules including th resolution rules to infer
the empty clause � from (KB ∧ ¬A) 

E.g. show that in the Wumpus world there is no pit at [1,2],
formal: ¬P1,2

The Knowledge base is

KB =  (B1,1 ⇒ (P1,2 ∨ P2,1))  ∧ ¬B1,1
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Proof by Resolution

Add the negated clause you want to show to the KB:
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A simple resolution algorithm
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Completeness of the resolution

� Resolution theorem:

If a set of clauses is unsatisfiable, the resolution closure of
these clauses contains the empty clause

� i.e., the resolution is complete, KB |= A can be shown by
deriving � from (KB ∧ ¬A).
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Resticted forms of clauses

� Definite clause: dicjunction of literals with exactly one
positive literal, e.g. (A ∨ ¬B ∨ ¬C) 

� Horn clause: dicjunction of literals with at most one
positive literal, e.g. (A ∨ ¬B ∨ ¬C),  (¬B ∨ ¬C) 

The resolvent of two Horn clauses is again a Horn clause.

Horn clauses can be read as implications:
A ∨ ¬B ∨ ¬C  ≡ (B ∧ C) ⇒ A

Horn clauses can be used for forward- and backward
chaining
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Forward chaining

� Idea: fire any rule whose premises are satisfied in the KB,
– add its conclusion to the KB, until query is found
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Forward chaining algorithm

� Forward chaining is sound and complete for 
Horn KBs
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example

25



Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Backward chaining

Idea: work backwards from the query q:

to prove q by BC,
– check if q is known already, or
– prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal 
stack

Avoid repeated work: check if new subgoal
1. has already been proved true, or
2. has already failed
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Forward vs. backward chaining

� FC is data-driven, automatic, unconscious processing,
– e.g., object recognition, routine decisions

� May do lots of work that is irrelevant to the goal 

� BC is goal-driven, appropriate for problem-solving,
– e.g., Where are my keys? How do I get into a PhD program?

� Complexity of BC can be much less than linear in size of 
KB
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Efficient propositional inference

Two families of efficient algorithms for propositional 
inference:

Complete backtracking search algorithms
� DPLL algorithm (Davis, Putnam, Logemann, Loveland)

� Incomplete local search algorithms
– WalkSAT algorithm
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The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is 
satisfiable. Improvements over truth table enumeration:

1. Early termination
A clause is true if any literal is true.
A sentence is false if any clause is false.

2. Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses. 
e.g., In the three clauses (A ∨ ¬B), (¬B ∨ ¬C), (C ∨ A), A and B are 
pure, C is impure. Make a pure symbol literal true.

3. Unit clause heuristic
Unit clause: only one literal in the clause
The only literal in a unit clause must be true.
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The DPLL algorithm

44



The WalkSAT algorithm

� Incomplete, local search algorithm

� Evaluation function: The min-conflict heuristic of 
minimizing the number of unsatisfied clauses

� Balance between greediness and randomness
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The WalkSAT algorithm
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Summary

� Logical agents apply inference to a knowledge base to 
derive new information and make decisions

Basic concepts of logic:
� syntax: formal structure of sentences
� semantics: truth of sentences wrt models
� entailment: necessary truth of one sentence given another
� inference: deriving sentences from other sentences
� soundness: derivations produce only entailed sentences
� completeness: derivations can produce all entailed sentences

� Wumpus world requires the ability to represent partial and negated 
information, reason by cases, etc.

� Resolution is complete for propositional logic
� Forward, backward chaining are linear-time, complete for Horn 

clauses
� DPLL and WalkSAT algorithms

47


