Vorlesung

Grundlagen der
Klnstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics — 16
Technische Universitat Minchen

wwwe6.in.tum.de
lafrenz@in.tum.de
089-289-18136
Room 03.07.055

Wintersemester 2012/13 23.11.2012 E m

Grundlagen der Kinstlichen Intelligenz — Techniques in Artificial Intelligence

Chapter 7 (3rd ed ., cont'd)

Logics

R. Lafrenz Wintersemester 2012/13 23.11.2012 E m

From last lecture we know

= Wumpus world

* Propositional Logic with syntax and semantics

= Truth-table approach for proofs

Inference by enumeration

Depth-first enumeration of all models is sound and complete

function TT-ENTAILS? (KB, a) returns true or false

symbols +— a list of the proposition symbols in KB and «
return T'T-CHECK-ALL(KB, o, symbols, [|)

function TT-CeECK-ALL(KB, o, symbols, model) returns true or false
if EmpTY?(symbols) then
if PL-TRUE?(KB, model) then return PL-TRUE?(a, model)
else return frue
else do
P < F1RST(symbols); rest < REST(symbols)
return T'T-CHECK-ALL(KB, o, rest, EXTEND(P, true, model) and
TT-CHECK-ALL(KB, e, rest, EXTEND(P, false, model)

For n symbols, time complexity is O(2"),
space complexity is O(n)

4

Logical equivalence

= Two sentences are logically equivalent if and only if they
are true in same models: a=R iff afFBandBfa

(N B) = (BN a) commutativity of A
(aV @) = (BVa) commutativity of V
(@ AB)A7y) = (aA(BA7y)) associativity of A
(avB)Vy) = (aV(BVy)) associativity of V/
—(—a) = a double-negation elimination
(@ = B) = (-8 = —a) contraposition
(¢ =) = (-~ V [3) implication elimination
(@ & B) = ((a = B)AN(B = «)) biconditional elimination
(A f) = (maV —fF) de Morgan
—(aV @) = (raAN—fF) de Morgan
(@A (BVY) = ((anp)V(aAy)) distributivity of A over V
(aV(BAY) = ((aVB)A(aVy)) distributivity of V over A

by
; &

Terminology

Countable alphabet X of consisting of A, B, C, ...

= Atom: atomic sentence, i.e. a symbol from the alphabet

= Literal: (possibly negated) atomic sentence, e.g. A, =B

» Clause: Disjunction of literals, e.g. (AU-B OC)

Validity and satisfiability

= A sentence is valid (tautology) if it is true in all models,
e.g., True, AlLA, A=A (AOA=>B)=B

= A sentence is satisfiable if it is true in some model
e.g., AllB, C

= A sentence is unsatisfiable if it is true in no models
e.g., ALHA

Validity is connected to inference via the Deduction Theorem:
KB Fa ifandonlyif (KB = a)is valid

= Satisfiability is connected to inference via:
KB Eaif and only if (KB 0~ a) is unsatisfiable

7 &

Proof methods

Proof methods divide into (roughly) two kinds:

= Application of inference rules

— Legitimate (sound) generation of new sentences from existing
ones

— Proof = a sequence of inference rule applications

— Algorithms can use inference rules as operators in a standard
search algorithm

— Typically require transformation of sentences into a normal form

= Model checking
— truth table enumeration (always exponential in n)

— Improved backtracking, e.g., Davis-Putnam-Logemann-Loveland
(DPLL) algorithm

— heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

8 &

Normal forms

9

Conjunctive normal form (CNF):

The sentence consists of a conjunction of disjunctions of
literals | , i.e. it has the following form:

l,) ?
i=1l.n Nj=1l.m

e.g., (AOJB 0-C) 0(~-D 0OB) O(E OC OF)

Disjunctive normal form (DNF):

The sentence consists of a disjunction of conjunctions of
literals | , i.e. it has the following form:

l,) ?
(L.,
i=1.n \j=1l.m

e.g., (AOJB 0-C) 0(~-D 0OB) O(E OC OOF)

Normal forms - properties

= For all sentences, there is at least one equivalent
sentence in CNF and DNF.

» A sentence in DNF is satisfiable iff a disjunction is
satisfiable.

= A sentence in KNF is valid iff every conjunction is valid.

10

Construction of CNF sentences

Eliminate > and « : A=B ~> (-ALB)

Move - to the inside: - (ALB) ~> (-A-B)
Distribute Oover : (AOB)UC ~> (AUC) (B UC)
Simplify: (AOA) ~> A

> w N

The result is a conjunction of disjunction of literals.

= An analogous procedure transforms any sentence into an
equivalent sentence in DNF.

» Sentences can be expanded exponentially during the
transformation.

—
11

Inference rules

Modus ponens
A=DB,A
B

Conjunction Elimination
A OA, OA; O... OA,
A

Conjunction Introduction
AL A, A LA,
A OA, OA; 0O... OA

n

12

Disjunction Introduction

A,

A, OA, OA, O... OA

n

Inference rules - Resolution

Unit resulotion
A B, -A
B

Resolution
ACB,-BOC
ALC

or, more general
A, OA, O...0A,, -A, 0B, O...0UB
A, O...0A 0B, O... OB,

: E

n

Proof by Resolution - Idea

14

We now want to study a deduction technique that does
not rely on explicitly testing all interpretations.

ldea: You try to show that a set of sentences is
unsatisfiable.

However: It is required that all sentences are given in
CNF.

But: In most cases, the sentences are close to their CNF
(and there is a quick transformation that preserves
satisfyability).

Nevertheless: In the worst case, this deduction technique
also requires an exponential amount of time (probably,
you cannot avoid this).

&

Proof by Resolution

To prove that KB |= A, show that (KB [1-A) is unsatisfiable

Use the inference rules including th resolution rules to infer
the empty clause O from (KB - A)

E.g. show that in the Wumpus world there is no pit at [1,2],
formal: =P, ,

The Knowledge base is

KB= (By; = (P1,0P54)) O =By,

—
15

Proof by Resolution

Add the negated clause you want to show to the KB:

Negation
_ of
KB In statement
CNF to prove
N~
"P2,1 v 31,1 "31,1 VP1,2 v P2,1 "P1,2 v 31,1 P1.2
Y

=By 1 vPy; vBy; P12V Pyqv Py, =By VP VB, Piav PV "P1,;‘ =P34 P2

16

A simple resolution algorithm

17

function PL-RESOLUTION(KB, &) returns true or false

clauses «+ the set of clauses in the CNF representation of KB N —«x
new++{ }
loop do
for each C;, C in clauses do
resolvents < PL-RESOLVE(C}, Cj)
if resolvents contains the empty clause then return true
new +— new |J resolvents
if new C clauses then return false
clauses + clauses U new

Completeness of the resolution

= Resolution theorem:

If a set of clauses is unsatisfiable, the resolution closure of
these clauses contains the empty clause

* |.e., the resolution is complete, KB |= A can be shown by
deriving O from (KB = A).

18

Resticted forms of clauses

19

= Definite clause: dicjunction of literals with exactly one
positive literal, e.g. (A -B -C)

= Horn clause: dicjunction of literals with at most one
positive literal, e.g. (AU-B 0-C), (-BU1-C)

The resolvent of two Horn clauses is again a Horn clause.

Horn clauses can be read as implications:
Al-BO-C = (BUOUC)=A

Horn clauses can be used for forward- and backward
chaining

Forward chaining

= |dea: fire any rule whose premises are satisfied in the KB,
— add its conclusion to the KB, until query is found

T
P = @
LANM = P P
BAL = M E}\
AANP = L M
AANB = L £
A
B /

A B

zo H

Forward chaining algorithm

21

function PL-FC-ENTAILS? (KB, ¢) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
p+— Pop(agenda)
unless inferred[p] do
inferred[p] + true
for each Horn clause ¢ in whose premise p appears do
decrement count|c|
if count[c] = 0 then do
if HEAD[¢| = ¢ then return true
Puse(HEAD[¢], agenda)
return false

= Forward chaining is sound and complete for
Horn KBs

Forward chaining example

22

Forward chaining example

23

Forward chaining example

24

Forward chaining example

25

Forward chaining example

26

Forward chaining example

27

Forward chaining example

28

Forward chaining example

29

Backward chaining

ldea: work backwards from the query Q:

to prove g by BC,
— check if g is known already, or
— prove by BC all premises of some rule concluding g

Avoid loops: check if new subgoal is already on the goal
stack

Avoid repeated work: check if new subgoal
1. has already been proved true, or
2. has already failed

30

Backward chaining example

31

Backward chaining example

32

Backward chaining example

33

Backward chaining example

Backward chaining example

Backward chaining example

36

Backward chaining example

Backward chaining example

38

Backward chaining example

39

Backward chaining example

Forward vs. backward chaining

FC is data-driven, automatic, unconscious processing,
— e.g., object recognition, routine decisions

= May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving,
— e.g., Where are my keys? How do | get into a PhD program?

Complexity of BC can be much less than linear in size of
KB

41

42

Efficient propositional inference

Two families of efficient algorithms for propositional
Inference:

Complete backtracking search algorithms
= DPLL algorithm (Davis, Putham, Logemann, Loveland)

* |[ncomplete local search algorithms
— Wal kSAT algorithm

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is
satisfiable. Improvements over truth table enumeration:

1. Early termination
A clause is true if any literal is true.
A sentence is false if any clause is false.

2. Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses.

e.g., In the three clauses (A L01-B), (-B O -C), (C JA), Aand B are
pure, C is impure. Make a pure symbol literal true.

3. Unit clause heuristic
Unit clause: only one literal in the clause
The only literal in a unit clause must be true.

_
“ X

The DPLL algorithm

44

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses + the set of clauses in the CNF representation of s
symbols + a list of the proposition symbols in s
return DPLL(clauses, symbols, ||)

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return frue
if some clause in clauses is false in model then return false
P, value + FIND-PURE-SYMBOL(symbols, clauses, model)

The Wal kSAT algorithm

= |[ncomplete, local search algorithm

= Evaluation function: The min-conflict heuristic of
minimizing the number of unsatisfied clauses

= Balance between greediness and randomness

45

The Wal kSAT algorithm

46

function WALKSAT(clauses, p, maz-flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move
maz-flips, number of flips allowed before giving up

model + a random assignment of true/ false to the symbols in clauses

if model satisfies clauses then return model
clause +— a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol
from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure

Summary

47

» Logical agents apply inference to a knowledge base to
derive new information and make decisions

Basic concepts of logic:

= syntax: formal structure of sentences

= semantics: truth of sentences wrt models

= entallment: necessary truth of one sentence given another

= nference: deriving sentences from other sentences

= soundness: derivations produce only entailed sentences

= completeness: derivations can produce all entailed sentences

= Wumpus world requires the ability to represent partial and negated
information, reason by cases, etc.

= Resolution is complete for propositional logic

= Forward, backward chaining are linear-time, complete for Horn
clauses

= DPLL and WalkSAT algorithms

