
Vorlesung

Grundlagen der
Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics – I6
Technische Universität München

www6.in.tum.de
lafrenz@in.tum.de
089-289-18136
Room 03.07.055

Wintersemester 2012/13 30.11.2012

Grundlagen der Künstlichen Intelligenz – Techniques in Artificial Intelligence

R. Lafrenz Wintersemester 2012/13 30.11.2012

Chapter 8/9 (3rd ed.)

Frist-Order Logic and Inference

Knowledge engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions,

and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem

instance
6. Pose queries to the inference procedure and get

answers
7. Debug the knowledge base

3

The electronic circuits domain

One-bit full adder

4

The electronic circuits domain

1. Identify the task
– Does the circuit actually add properly? (circuit

verification)

2. Assemble the relevant knowledge
– Composed of wires and gates; Types of gates (AND,

OR, XOR, NOT)
– Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary
– Type(X1) = XOR (or Type(X1, XOR) or XOR(X1))

5

The electronic circuits domain

4. Encode general knowledge of the domain
Assume t, t1,t2 are terminals, i.e. Terminal (t1) …

– ∀t1,t2 Connected(t1, t2) ⇒ Signal(t1) = Signal(t2)
– ∀t Signal(t) = 1 ∨ Signal(t) = 0

– 1 ≠ 0

– ∀t1,t2 Connected(t1, t2) ⇒ Connected(t2, t1)

– ∀g Type(g) = OR ⇒ Signal(Out(1,g)) = 1 ⇔ ∃n Signal(In(n,g)) = 1
– ∀g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n Signal(In(n,g)) = 0

– ∀g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔
Signal(In(1,g)) ≠ Signal(In(2,g))

– ∀g Type(g) = NOT ⇒ Signal(Out(1,g)) ≠ Signal(In(1,g))

6

The electronic circuits domain

5. Encode the specific problem instance

Type(X1) = XOR Type(X2) = XOR
Type(A1) = AND Type(A2) = AND
Type(O1) = OR

Connected(Out(1,X1),In(1,X2)) Connected(In(1,C1),In(1,X1))
Connected(Out(1,X1),In(2,A2)) Connected(In(1,C1),In(1,A1))
Connected(Out(1,A2),In(1,O1)) Connected(In(2,C1),In(2,X1))
Connected(Out(1,A1),In(2,O1)) Connected(In(2,C1),In(2,A1))
Connected(Out(1,X2),Out(1,C1)) Connected(In(3,C1),In(2,X2))
Connected(Out(1,O1),Out(2,C1)) Connected(In(3,C1),In(1,A2))

7

The electronic circuits domain

6. Pose queries to the inference procedure
Which input values lead to “sum bit of C1= 0 and carry bit
of C1 = 1” ?
∃i1,i2,i3 Signal(In(1,C1)) = i1 ∧ Signal(In(2,C1)) = i2

∧ Signal(In(3,C1)) = i3
∧ Signal(Out(1,C1)) = 0 ∧ Signal(Out(2,C1)) = 1

What are the possible sets of values of all the terminals
for the adder circuit?

∃i1,i2,i3,o1,o2 Signal(In(1,C1)) = i1 ∧ Signal(In(2,C1)) = i2 ∧
Signal(In(3,C1)) = i3 ∧ Signal(Out(1,C1)) = o1 ∧
Signal(Out(2,C1)) = o2

8

The electronic circuits domain

7. Debug the knowledge base, example XOR

∃i1,i2,o Signal(In(1,C1)) = i1 ∧ Signal(In(2,C1)) = i2
∧ Signal(Out(1,C1)) = X1

Consider definition of XOR
Signal(Out(1, X1) = 1 ⇔ Signal(Out(1, X1) ≠ Signal(Out(2, X1)

Example Input is 0 and 1:
Signal(Out(1, X1) = 1 ⇔ 1 ≠ 0

May have omitted assertions like 1 ≠ 0, then the statement
Signal(Out(1, X1) = 1 cannot be inferred

9

Inference in First-Order Logic (chap. 9)

� Reducing first-order inference to propositional inference
� Unification
� Generalized Modus Ponens
� Forward chaining
� Backward chaining
� Resolution

10

Universal instantiation (UI)

� Every instantiation of a universally quantified sentence is
entailed by it:

∀v α
Subst({v/g}, α)

for any variable v and ground term g

� E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:

King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))

11

Existential instantiation (EI)

� For any sentence α, variable v, and constant symbol k that
does not appear elsewhere in the knowledge base:

∃v α
Subst({v/k}, α)

� E.g., ∃x Crown(x) ∧ OnHead(x,John) yields:

Crown(C1) ∧ OnHead(C1,John)

provided C1 is a new constant symbol,
called a Skolem constant

12

Reduction to propositional inference

Suppose the KB contains just the following:

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)

� Instantiating the universal sentence in all possible ways,
we have:
King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

� The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard), etc.
13

Reduction contd.

� Every FOL KB can be propositionalized so as to preserve
entailment

� (A ground sentence is entailed by new KB iff entailed by
original KB)

� Idea: propositionalize KB and query, apply resolution,
return result

� Problem: with function symbols, there are infinitely many
ground terms,
– e.g., Father(Father(Father(John)))

14

Reduction contd.

Theorem: Herbrand (1930). If a sentence α is entailed by an
FOL KB, it is entailed by a finite subset of the
propositionalized KB

Idea: For n = 0 to ∞ do
create a propositional KB by instantiating with depth-n
terms
see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL
is semidecidable (algorithms exist that say yes to every
entailed sentence, but no algorithm exists that also says
no to every nonentailed sentence.)

15

Problems with propositionalization

� Propositionalization seems to generate lots of irrelevant
sentences.

� Example:

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
∀y Greedy(y)
Brother(Richard,John)

� it seems obvious that Evil(John), but propositionalization
produces lots of facts such as Greedy(Richard) that are
irrelevant

� With p k-ary predicates and n constants, there are p·nk

instantiations.
16

Unification

� We can get the inference immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works: Subst(θ, King(x) ∧ Greedy(x) ⇒ Evil(x),
Greedy(y))

� Unify(α,β) = θ if Subst(θ, α) = Subst(θ, β)

p q θ
Knows(John,x) Knows(John,Jane)
Knows(John,x) Knows(y, Bill)
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,Elisabeth)

� Standardizing apart eliminates overlap of variables, e.g.,
Knows(z17,Elisabeth)

17

{x/Jane}}

{x/Bill,y/John}}

{y/John,x/Mother(John)}}

{fail}

Unification

� To unify Knows(John,x) and Knows(y,z),

θ = {y/John, x/z } or θ = {y/John, x/John, z/John}

� The first unifier is more general than the second, because
there are fewer constraints on the variables.

� There is a single most general unifier (MGU) that is
unique up to renaming of variables.

MGU = { y/John, x/z }

18

The unification algorithm

19

The unification algorithm

20

Generalized Modus Ponens (GMP)

p1', p2', … , pn', (p1 ∧ p2 ∧ … ∧ pn ⇒q)

qθ

p1' is King(John) p1 is King(x)
p2' is Greedy(y) p2 is Greedy(x)
θ is {x/John,y/John} q is Evil(x)
q θ is Evil(John)

� GMP used with KB of definite clauses
(exactly one positive literal)

� All variables assumed universally quantified

where Subst(θ, pi‘) = Subst(θ, pi) for all i

21

Soundness of GMP

� Need to show that
p1', …, pn', (p1 ∧ … ∧ pn ⇒ q) ╞ qθ

provided that Subst(θ, pi‘) = Subst(θ, pi) for all i

� Lemma:
For any sentence p, we have p ╞ Subst(θ, p) by UI

1. (p1 ∧ … ∧ pn ⇒ q) ╞ Subst(θ , p1 ∧ … ∧ pn ⇒ q)
= Subst(θ,p1) ∧ … ∧ Subst(θ, pn)⇒ Subst(θ, q)

2. p1', …, pn' ╞ p1' ∧ … ∧ pn' ╞ Subst(θ, p1‘) ∧ … ∧ Subst(θ, pn‘)
3. From 1 and 2, qθ follows by ordinary Modus Ponens

22

Example knowledge base

� The law says that it is a crime for an American to sell
weapons to hostile nations. The country Nono, an enemy
of America, has some missiles, and all of its missiles were
sold to it by Colonel West, who is American.

� Prove that Col. West is a criminal

23

Example knowledge base contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
Enemy(Nono,America)24

Forward chaining algorithm

25

Forward chaining proof

26

Forward chaining proof

27

Forward chaining proof

28

Properties of forward chaining

� Sound and complete for first-order definite clauses

� Datalog = first-order definite clauses + no functions
� FC terminates for Datalog in finite number of iterations

� May not terminate in general if α is not entailed

29

Efficiency of forward chaining

Incremental forward chaining: no need to match a rule on
iteration k if a premise wasn't added on iteration k-1
⇒ match each rule whose premise contains a newly

added positive literal

Matching itself can be expensive:
Database indexing allows O(1) retrieval of known facts

– e.g., query Missile(x) retrieves Missile(M1)

Forward chaining is widely used in deductive databases

30

Hard matching example

� Colorable() is inferred iff the CSP has a solution
� CSPs include 3SAT as a special case, hence matching

is NP-hard

Diff(wa,nt) ∧ Diff(wa,sa) ∧ Diff(nt,q) ∧
Diff(nt,sa) ∧ Diff(q,nsw) ∧ Diff(q,sa) ∧
Diff(nsw,v) ∧ Diff(nsw,sa) ∧ Diff(v,sa) ⇒
Colorable()

Diff(Red,Blue) Diff (Red,Green)
Diff(Green,Red) Diff(Green,Blue)
Diff(Blue,Red) Diff(Blue,Green)

31

Backward chaining algorithm

SUBST(COMPOSE(θ1, θ2), p) = SUBST(θ2, SUBST(θ1, p))

32

Backward chaining example

33

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Backward chaining example

34

Backward chaining example

35

Backward chaining example

36

Missile(x) ⇒ Weapon(x)

Backward chaining example

37

Owns(Nono,M1) and Missile(M1)

Backward chaining example

38

Backward chaining example

39

Backward chaining example

40

Properties of backward chaining

� Depth-first recursive proof search: space is linear in size
of proof

� Incomplete due to infinite loops
⇒ fix by checking current goal against every goal on
stack

� Inefficient due to repeated subgoals (both success and
failure)
⇒ fix using caching of previous results (extra space)

� Widely used for logic programming

41

Summary

� Inference in First-Order Logic
� Reduction to propositional inference
� Generalized Modus Ponens
� Unification
� Forward and Backward Chaining
� Prolog

42

