Vorlesung

Grundlagen der

Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics - I6
Technische Universität München
www6.in.tum.de
lafrenz@in.tum.de
089-289-18136

Room 03.07.055

Chapter 8/9 (3rd ed.)

Frist-Order Logic and Inference

Knowledge engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base

The electronic circuits domain

One-bit full adder

The electronic circuits domain

1. Identify the task

- Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge

- Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
- Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary

- Type(X1) = XOR (or Type(X1, XOR) or XOR(X1))

The electronic circuits domain

4. Encode general knowledge of the domain Assume t, t_{1}, t_{2} are terminals, i.e. Terminal $\left(t_{1}\right) \ldots$
$-\forall \mathrm{t}_{1}, \mathrm{t}_{2}$ Connected $\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \Rightarrow \operatorname{Signal}\left(\mathrm{t}_{1}\right)=\operatorname{Signal}\left(\mathrm{t}_{2}\right)$
$-\forall \mathrm{t}$ Signal $(\mathrm{t})=1 \vee \operatorname{Signal}(\mathrm{t})=0$

- $1 \neq 0$
- $\forall \mathrm{t}_{1}, \mathrm{t}_{2}$ Connected $\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \Rightarrow$ Connected $\left(\mathrm{t}_{2}, \mathrm{t}_{1}\right)$
$-\forall \mathrm{g} \operatorname{Type}(\mathrm{g})=\mathrm{OR} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g}))=1 \Leftrightarrow \exists \mathrm{nignal}(\operatorname{In}(\mathrm{n}, \mathrm{g}))=1$
$-\forall \mathrm{g} \operatorname{Type}(\mathrm{g})=\mathrm{AND} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g}))=0 \Leftrightarrow \exists \mathrm{nignal}(\operatorname{In}(\mathrm{n}, \mathrm{g}))=0$
$-\forall \mathrm{Type}(\mathrm{g})=\mathrm{XOR} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g}))=1 \Leftrightarrow$ Signal $(\ln (1, \mathrm{~g})) \neq$ Signal $(\ln (2, \mathrm{~g}))$
$-\forall \mathrm{g} \operatorname{Type}(\mathrm{g})=\operatorname{NOT} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g})) \neq \operatorname{Signal}(\operatorname{In}(1, \mathrm{~g}))$

The electronic circuits domain

5. Encode the specific problem instance

$$
\begin{array}{ll}
\operatorname{Type}\left(\mathrm{X}_{1}\right)=\text { XOR } & \text { Type }\left(\mathrm{X}_{2}\right)=\text { XOR } \\
\operatorname{Type}\left(\mathrm{A}_{1}\right)=\text { AND } & \text { Type }\left(\mathrm{A}_{2}\right)=\text { AND }
\end{array}
$$

$$
\operatorname{Type}\left(\mathrm{O}_{1}\right)=\mathrm{OR}
$$

Connected(Out($\left.\left.1, \mathrm{X}_{1}\right), \ln \left(1, \mathrm{X}_{2}\right)\right) \quad$ Connected $\left(\ln \left(1, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{X}_{1}\right)\right)$ Connected(Out($\left.\left.1, \mathrm{X}_{1}\right), \ln \left(2, \mathrm{~A}_{2}\right)\right) \quad$ Connected $\left(\ln \left(1, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{~A}_{1}\right)\right)$ Connected(Out($\left.\left(1, \mathrm{~A}_{2}\right), \ln \left(1, \mathrm{O}_{1}\right)\right) \quad$ Connected $\left(\ln \left(2, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{X}_{1}\right)\right)$ Connected(Out($\left.\left.1, \mathrm{~A}_{1}\right), \ln \left(2, \mathrm{O}_{1}\right)\right) \quad$ Connected $\left(\ln \left(2, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{~A}_{1}\right)\right)$ Connected(Out($1, \mathrm{X}_{2}$), Out($\left.1, \mathrm{C}_{1}\right)$) Connected $\left(\operatorname{In}\left(3, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{X}_{2}\right)\right)$ Connected(Out(1, $\left.\left.\mathrm{O}_{1}\right), \operatorname{Out}\left(2, \mathrm{C}_{1}\right)\right) \quad$ Connected $\left(\operatorname{In}\left(3, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{~A}_{2}\right)\right)$

The electronic circuits domain

6. Pose queries to the inference procedure Which input values lead to "sum bit of $\mathrm{C}_{1}=0$ and carry bit of $\mathrm{C}_{1}=1$ "?
$\exists \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3} \operatorname{Signal}\left(\operatorname{In}\left(1, \mathrm{C}_{1}\right)\right)=\mathrm{i}_{1} \wedge \operatorname{Signal}\left(\ln \left(2, \mathrm{C}_{1}\right)\right)=\mathrm{i}_{2}$
$\wedge \operatorname{Signal}\left(\ln \left(3, C_{1}\right)\right)=i_{3}$
$\wedge \operatorname{Signal}\left(\operatorname{Out}\left(1, \mathrm{C}_{1}\right)\right)=0 \wedge \operatorname{Signal}\left(\operatorname{Out}\left(2, \mathrm{C}_{1}\right)\right)=1$

What are the possible sets of values of all the terminals for the adder circuit?
$\exists i_{1}, i_{2}, i_{3}, \mathrm{o}_{1}, \mathrm{o}_{2} \operatorname{Signal}\left(\ln \left(1, \mathrm{C}_{1}\right)\right)=\mathrm{i}_{1} \wedge \operatorname{Signal}\left(\ln \left(2, \mathrm{C}_{1}\right)\right)=\mathrm{i}_{2} \wedge$ Signal $\left(\ln \left(3, C_{1}\right)\right)=i_{3} \wedge \operatorname{Signal}\left(\operatorname{Out}\left(1, C_{1}\right)\right)=O_{1} \wedge$ Signal $\left(\right.$ Out $\left.\left(2, C_{1}\right)\right)=0_{2}$

The electronic circuits domain

7. Debug the knowledge base, example XOR
$\exists \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{o} \operatorname{Signal}\left(\ln \left(1, \mathrm{C}_{1}\right)\right)=\mathrm{i}_{1} \wedge \operatorname{Signal}\left(\operatorname{In}\left(2, \mathrm{C}_{1}\right)\right)=\mathrm{i}_{2}$
$\wedge \operatorname{Signal}\left(\operatorname{Out}\left(1, \mathrm{C}_{1}\right)\right)=\mathrm{X}_{1}$
Consider definition of XOR
$\operatorname{Signal}\left(\operatorname{Out}\left(1, \mathrm{X}_{1}\right)=1 \Leftrightarrow \operatorname{Signal}\left(\operatorname{Out}\left(1, \mathrm{X}_{1}\right) \neq \operatorname{Signal}\left(\operatorname{Out}\left(2, \mathrm{X}_{1}\right)\right.\right.\right.$
Example Input is 0 and 1:
Signal(Out $\left(1, X_{1}\right)=1 \Leftrightarrow 1 \neq 0$

May have omitted assertions like $1 \neq 0$, then the statement Signal(Out(1, $\left.X_{1}\right)=1$ cannot be inferred

Inference in First-Order Logic (chap. 9)

- Reducing first-order inference to propositional inference
- Unification
- Generalized Modus Ponens
- Forward chaining
- Backward chaining
- Resolution

Universal instantiation (UI)

- Every instantiation of a universally quantified sentence is entailed by it:
$\frac{\forall v \alpha}{\text { Subst }(\{v / g\}, \alpha)}$
for any variable v and ground term g
- E.g., $\forall \mathrm{x} \operatorname{King}(x) \wedge \operatorname{Greed}(x) \Rightarrow$ Evil(x) yields:

```
    King(John) ^ Greedy(John) \(\Rightarrow\) Evil(John)
    King(Richard) \(\wedge\) Greedy(Richard) \(\Rightarrow\) Evil(Richard)
    King(Father(John)) ^ Greedy(Father(John)) \(\Rightarrow\) Evil(Father(John))
```


Existential instantiation (EI)

- For any sentence α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base:

$$
\frac{\exists v \alpha}{\text { Subst(\{v/k\}, } \alpha)}
$$

- E.g., $\exists x \operatorname{Crown}(x) \wedge$ OnHead(x,John) yields:
$\operatorname{Crown}\left(C_{1}\right) \wedge$ OnHead $\left(C_{1}\right.$, John $)$
provided C_{1} is a new constant symbol, called a Skolem constant

Reduction to propositional inference

Suppose the KB contains just the following:

```
* King(x) ^ Greedy(x) = Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)
```

- Instantiating the universal sentence in all possible ways, we have:

```
King(John) ^ Greedy(John) = Evil(John)
King(Richard) ^ Greedy(Richard) = Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)
```

- The new KB is propositionalized: proposition symbols are King(John), Greedy(John), Evil(John), King(Richard), etc.

Reduction contd.

- Every FOL KB can be propositionalized so as to preserve entailment
- (A ground sentence is entailed by new KB iff entailed by original KB)
- Idea: propositionalize KB and query, apply resolution, return result
- Problem: with function symbols, there are infinitely many ground terms,
- e.g., Father(Father(Father(John)))

Reduction contd.

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is entailed by a finite subset of the propositionalized KB

Idea: For $n=0$ to ∞ do
create a propositional KB by instantiating with depth-n terms see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed
Theorem: Turing (1936), Church (1936) Entailment for FOL is semidecidable (algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every nonentailed sentence.)

Problems with propositionalization

- Propositionalization seems to generate lots of irrelevant sentences.
- Example:
$\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)$
King(John)
$\forall y$ Greedy(y)
Brother(Richard,John)
- it seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant
- With $p k$-ary predicates and n constants, there are $p \cdot n^{k}$ instantiations.

Unification

- We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and $\operatorname{Greedy}(x)$ match King(John) and Greedy (y)
$\theta=\{x / J o h n, y / J o h n\}$ works: Subst $(\theta, \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)$, Greedy(y))
- $\operatorname{Unify}(\alpha, \beta)=\theta$ if $\operatorname{Subst}(\theta, \alpha)=\operatorname{Subst}(\theta, \beta)$

p	q	θ
Knows(John,x)	Knows(John,Jane)	$\{x /$ Jane $\}\}$
Knows(John,x)	Knows(y, Bill)	$\{x /$ Bill,y/John $\}\}$
Knows(John,x)	Knows(y,Mother(y))	$\{y / J o h n, x /$ Mother(John) $\}\}$
Knows(John,x)	Knows(x,Elisabeth)	$\{\{$ fail $\}$

- Standardizing apart eliminates overlap of variables, e.g., Knows(z_{17},Elisabeth)

Unification

- To unify Knows(John, x) and Knows(y,z),

$$
\theta=\{y / J o h n, x / z\} \text { or } \theta=\{y / J o h n, x / J o h n, z / J o h n\}
$$

- The first unifier is more general than the second, because there are fewer constraints on the variables.
- There is a single most general unifier (MGU) that is unique up to renaming of variables.

MGU $=\{y / J o h n, x / z\}$

The unification algorithm

function $\operatorname{Unify}(x, y, \theta)$ returns a substitution to make x and y identical inputs: x, a variable, constant, list, or compound
y, a variable, constant, list, or compound
θ, the substitution built up so far
if $\theta=$ failure then return failure else if $x=y$ then return θ
else if $\operatorname{Variable} ?(x)$ then return $\operatorname{Unify}-\operatorname{Var}(x, y, \theta)$
else if Variable? (y) then return $\operatorname{Unify-\operatorname {Var}(y,x,\theta),~)~}$
else if Compound? (x) and Compound? (y) then
return $\operatorname{Unify}(\operatorname{Args}[x], \operatorname{Args}[y], \operatorname{Unify}(\mathrm{Op}[x], \mathrm{Op}[y], \theta))$
else if List? (x) and List ? (y) then
return $\operatorname{Unify}(\operatorname{Rest}[x], \operatorname{Rest}[y], \operatorname{Unify}(\operatorname{First}[x], \operatorname{First}[y], \theta))$
else return failure

The unification algorithm

function Unify-VAR(var, x, θ) returns a substitution
inputs: var, a variable
x, any expression
θ, the substitution built up so far
if $\{$ var $/$ val $\} \in \theta$ then return $\operatorname{UNify}($ val, $x, \theta)$
else if $\{x / v a l\} \in \theta$ then return $\operatorname{Unify}(v a r, v a l, \theta)$
else if OCCUR-CHECK? (var, x) then return failure
else return add $\{v a r / x\}$ to θ

Generalized Modus Ponens (GMP)

$p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)$
$q \theta$
where $\operatorname{Subst}\left(\theta, \mathrm{p}_{\mathrm{i}}{ }^{`}\right)=\operatorname{Subst}\left(\theta, \mathrm{p}_{\mathrm{i}}\right)$ for all i
$\mathrm{p}_{1}{ }^{\prime}$ is $\operatorname{King}(J o h n) \quad \mathrm{p}_{1}$ is $\operatorname{King}(x)$
$\mathrm{p}_{2}{ }^{\prime}$ is $\operatorname{Greed} y(y) \quad \mathrm{p}_{2}$ is $\operatorname{Greed} y(x)$
θ is $\{\mathrm{x} /$ John, $\mathrm{y} / \mathrm{John}\} \mathrm{q}$ is $\operatorname{Evil}(\mathrm{x})$
q θ is Evil(John)

- GMP used with KB of definite clauses (exactly one positive literal)
- All variables assumed universally quantified

Soundness of GMP

- Need to show that

$$
p_{1}^{\prime}, \ldots, p_{n}^{\prime},\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \neq q \theta
$$

provided that $\operatorname{Subst}\left(\theta, \mathrm{p}_{\mathrm{i}}{ }^{\prime}\right)=\operatorname{Subst}\left(\theta, \mathrm{p}_{\mathrm{i}}\right)$ for all i

- Lemma:

For any sentence p, we have p = $\operatorname{Subst}(\theta, \mathrm{p})$ by UI

1. $\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \vDash \operatorname{Subst}\left(\theta, p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right)$
$=\operatorname{Subst}\left(\theta, \mathrm{p}_{1}\right) \wedge \ldots \wedge \operatorname{Subst}\left(\theta, \mathrm{p}_{\mathrm{n}}\right) \Rightarrow \operatorname{Subst}(\theta, \mathrm{q})$
2. $p_{1}{ }^{\prime}, \ldots, p_{n}{ }^{\prime}=p_{1}{ }^{\prime} \wedge \ldots \wedge p_{n}{ }^{\prime} \vDash \operatorname{Subst}\left(\theta, p_{1}{ }^{\prime}\right) \wedge \ldots \wedge \operatorname{Subst}\left(\theta, p_{n}{ }^{\prime}\right)$
3. From 1 and $2, q \theta$ follows by ordinary Modus Ponens

Example knowledge base

- The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.
- Prove that Col. West is a criminal

Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations:
American $(x) \wedge$ Weapon $(y) \wedge$ Sells $(x, y, z) \wedge$ Hostile $(z) \Rightarrow$ Criminal (x)
Nono ... has some missiles, i.e., $\exists x$ Owns(Nono,x) \wedge Missile(x):
Owns(Nono, M_{1}) and Missile(M_{1})
... all of its missiles were sold to it by Colonel West Missile (x) \wedge Owns(Nono, $x) \Rightarrow$ Sells(West, x,Nono)

Missiles are weapons:
$\operatorname{Missile}(x) \Rightarrow$ Weapon (x)
An enemy of America counts as "hostile":
Enemy(x,America) \Rightarrow Hostile(x)
West, who is American ...
American(West)
The country Nono, an enemy of America ...
Enemy(Nono,America)

Forward chaining algorithm

```
function FOL-FC-ASk(KB, \alpha) returns a substitution or false
    repeat until new is empty
    new}\leftarrow{
    for each sentence r in }KB\mathrm{ do
        ( }\mp@subsup{p}{1}{\wedge}\ldots\wedge\mp@subsup{p}{n}{}=>q)\leftarrow\mathrm{ Standardize-APART (r)
        for each 0 such that ( }\mp@subsup{p}{1}{}\wedge\ldots\wedge\mp@subsup{p}{n}{})0=(\mp@subsup{p}{1}{\prime}\wedge\ldots\wedge\mp@subsup{p}{n}{\prime})
                for some p}\mp@subsup{p}{1}{\prime},\ldots,\mp@subsup{p}{n}{\prime}\mathrm{ in }K
            q
            if q}\mp@subsup{q}{}{\prime}\mathrm{ is not a renaming of a sentence already in KB or new then do
                add q' to new
                \phi\leftarrowUNIFY(q}\mp@subsup{q}{}{\prime},\alpha
                if }\phi\mathrm{ is not fail then return }
    add new to KB
    return false
```


Forward chaining proof

| American(West) \quad Missile(MI) \quad Owns(Nono, MI) \quad Enemy(Nono,America) |
| :--- | :--- |

Forward chaining proof

Forward chaining proof

Properties of forward chaining

- Sound and complete for first-order definite clauses
- Datalog = first-order definite clauses + no functions
- FC terminates for Datalog in finite number of iterations
- May not terminate in general if α is not entailed

Efficiency of forward chaining

Incremental forward chaining: no need to match a rule on iteration k if a premise wasn't added on iteration $k-1$
\Rightarrow match each rule whose premise contains a newly added positive literal

Matching itself can be expensive:
Database indexing allows $\mathrm{O}(1)$ retrieval of known facts

- e.g., query $\operatorname{Missile}(x)$ retrieves $\operatorname{Missile}\left(M_{1}\right)$

Forward chaining is widely used in deductive databases

Hard matching example

$\operatorname{Diff}(w a, n t) \wedge \operatorname{Diff}(w a, s a) \wedge \operatorname{Diff}(n t, q) \wedge$ $\operatorname{Diff}(n t, s a)$ ^ $\operatorname{Diff}(q, n s w) \wedge \operatorname{Diff}(q, s a) \wedge$ $\operatorname{Diff}(n s w, v) \wedge \operatorname{Diff}(n s w, s a) \wedge \operatorname{Diff}(v, s a) \Rightarrow$ Colorable()

Diff(Red,Blue) Diff (Red,Green) Diff(Green,Red) Diff(Green,Blue) Diff(Blue,Red) Diff(Blue,Green)

- Colorable() is inferred iff the CSP has a solution
- CSPs include 3SAT as a special case, hence matching is NP-hard

Backward chaining algorithm

function FOL-BC-ASk ($K B$, goals, θ) returns a set of substitutions
inputs: $K B$, a knowledge base
goals, a list of conjuncts forming a query
θ, the current substitution, initially the empty substitution $\}$
local variables: ans, a set of substitutions, initially empty
if goals is empty then return $\{\theta\}$
$q^{\prime} \leftarrow \operatorname{SuBST}(\theta, \operatorname{First}($ goals $))$
for each r in $K B$ where Standardize- $\operatorname{Apart}(r)=\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right)$
and $\theta^{\prime} \leftarrow \operatorname{Unify}\left(q, q^{\prime}\right)$ succeeds
ans $\leftarrow \operatorname{FOL}-\mathrm{BC}-\mathrm{Ask}\left(K B,\left[p_{1}, \ldots, p_{n} \mid \operatorname{Rest}(\right.\right.$ goals $\left.\left.)\right], \operatorname{Compose}\left(\theta, \theta^{\prime}\right)\right) \cup a n s$
return ans
$\operatorname{SUBST}\left(\operatorname{COMPOSE}\left(\theta_{1}, \theta_{2}\right), \mathrm{p}\right)=\operatorname{SUBST}\left(\theta_{2}, \operatorname{SUBST}\left(\theta_{1}, \mathrm{p}\right)\right)$

Backward chaining example

$$
\text { American }(x) \wedge \text { Weapon }(y) \wedge \text { Sells }(x, y, z) \wedge \text { Hostile }(z) \Rightarrow \text { Criminal }(x)
$$

Criminal(West)

Backward chaining example

Backward chaining example

Backward chaining example

$$
\text { Missile }(x) \Rightarrow \text { Weapon }(x)
$$

Backward chaining example

Owns(Nono, M_{1}) and $\operatorname{Missile}\left(M_{1}\right)$

Backward chaining example

Backward chaining example

Backward chaining example

Properties of backward chaining

- Depth-first recursive proof search: space is linear in size of proof
- Incomplete due to infinite loops
\Rightarrow fix by checking current goal against every goal on stack
- Inefficient due to repeated subgoals (both success and failure)
\Rightarrow fix using caching of previous results (extra space)
- Widely used for logic programming

Summary

- Inference in First-Order Logic
- Reduction to propositional inference
- Generalized Modus Ponens
- Unification
- Forward and Backward Chaining
- Prolog

