
Robot Vision Course WS 2013/14 - Assignment 1

Robot Vision Course WS 2013 / 2014
Philipp Heise, Brian Jensen, Sebastian Klose

Assignment 1 - Due: 30.10.2013

Exercise 0 Getting to know ROS

1. (ROS Tutorials) The best way for getting started with ROS, is using the Tutorials pro-
vided on http://wiki.ros.org/ROS/Tutorials

• Walk through all the Tutorials on this page, to get an overview about the ROS
system. As C++ will be the language of choice throughout this course, please stick
to those tutorials where appropriate.

• As of ROS Groovy there are currently two separate build systems: rosbuild, the
legacy build system, and catkin the new default build system. Since we are target-
ting ROS Hydro in this course, we will be using the catkin build system, so where
appropriate stick to the tutorials for the catkin build system.

• Upon completion you should be comfortable with building ROS packages, running
ROS nodes and publishing / subscribing to messages.

2. (ROS Visualization Tools) It is important that you make yourself familiar with the core
ROS visualisation tools: rqt and rviz. You will be using both of these tools extensively
throughout the course, so be sure to review the user documentation at http://wiki.

ros.org/rqt and http://wiki.ros.org/rviz/UserGuide, in particular how to visualise
image data in each tool.

3. (ROS Data Serialization) This topic is important enough to be handled separately, in
ROS robot data of all kinds is saved, replayed and exchanged using rosbag files, see http:
//wiki.ros.org/rosbag. We will be making extensive use of bag files in the first half of
this course. Grab a bag file from http://www6.in.tum.de/~jensen/rvc/corner_data/,
use the rosbag tool to replay the data and visualise the camera data using rviz and rqt.

Exercise 1 Harris Corner Detector

In this exercise, you will implement the first fully functional ROS node in the course: a Harris
corner detector for key point extraction. This node will subscribe to an image topic, compute
the Harris corner response for each valid point in the image, extract key points from the response
values, and finally publish to an image topic with the key points drawn on the original image.

1. (Package Configuration) Create a package named {group name} features using the catkin
helper script catkin create pkg in your catkin workspace.

• The package should have dependencies on: cv bridge, image transport,
dynamic reconfigure, opencv and roscpp. Check the generated package.xml to
make sure all dependencies are included correctly.

1

http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/rqt
http://wiki.ros.org/rqt
http://wiki.ros.org/rviz/UserGuide
http://wiki.ros.org/rosbag
http://wiki.ros.org/rosbag
http://www6.in.tum.de/~jensen/rvc/corner_data/

Robot Vision Course WS 2013/14 - Assignment 1

• In this package src create a file named FeatureDetectorNode.hpp. This file will
contain the node code for subscribing to and publishing images, as well as coordi-
nating the Harris corner detector.

• Create another file named feature detector main.cpp. This file will contain the
main entry point and run loop of the node.

• Create a third file HarrisDetector.hpp. This file will contain the actual Harris
corner detector implementation.

• Modify the package’s CMakeLists.txt file so that an executable node named
feature detector from the previously described three files is generated. Follow the
catkin CMake conventions, see http://wiki.ros.org/catkin/CMakeLists.txt.
For OpenCV you will need to manually set the appropriate settings since it is not a
catkin package:

– Get the OpenCV settings with find package(OpenCV REQUIRED).

– Then add the headers to search paths with
include directories(SYSTEM ${OpenCV INCLUDE DIRS})

– Finally make sure to link your target with the OpenCV libraries
target link libraries(feature detector ${OpenCV LIBRARIES})

2. (ROS Node) The first part of your Harris corner detector implementation involves devel-
oping some ROS infrastructure code for receiving and publishing image messages. Here
we will make use of functionality present in the image transport and cv bridge pack-
ages for handling image messages instead creating and processing the raw image messages
manually, see http://wiki.ros.org/image_transport and http://wiki.ros.org/cv_

bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages.

• Create a class FeatureDetectorNode in the file FeatureDetectorNode.cpp. This
class should have the following members:

– A member of type image transport::ImageTransport for creating image mes-
sage publishers and subscribers.

– A member of type image transport::Subscriber for subscribing to incoming
image messages.

– A member of type image transport::Publisher for publishing outgoing image
messages.

• Create a member function with the following signature:
void imageMessageCallback(const sensor msgs::ImageConstPtr& msg).
This function will initiate Harris corner detection on the incoming image, create a
duplicate of the image, draw the detected key points on the duplicate, and then
publish the resulting image.

• The FeatureDetectorNode class constructor should take a ros::NodeHandle refer-
ence and initialize all the image transport members.

– The Publisher should publish on a topic named image

– The Subscriber should subscribe to a topic named in. It should register a call
back to the member function imageMessageCallback previously defined.

• Use the cv bridge functionality in the imageMessageCallback member function
for creating a cv::Mat copy of the image message.

– The function cv bridge::toCvCopy should be used to get a copy of the image
message data.

– The returned instance of type cv bridge::CvImagePtr contains a member
image that contains the cv::Mat data that you can pass on to OpenCV func-
tions. Use the member function toImageMsg() for publishing images messages
containing the image data.

2

http://wiki.ros.org/catkin/CMakeLists.txt
http://wiki.ros.org/image_transport
http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages
http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages

Robot Vision Course WS 2013/14 - Assignment 1

• In the file feature detector main.cpp create a simple ROS main function. Here
you should instantiate the FeatureDetectorNode class and run the ROS message
loop indefinitely, as is typical in the ROS tutorials.

• To verify that your ImagePublisher and ImageSubscriber implementation is work-
ing correctly you should modify the imageMessageCallback function to use OpenCV
to draw a giant circle on the incoming image message and publish the resulting im-
age.

3. (Harris corner detection) Recall that the Harris corner detector looks for points in the
image where the immediate area enclosing the point has high self dissimilarity in all
directions. This can be approximately estimated using image partial derivatives and the
Sum of Squared Differences method:

S(x, y; ∆x,∆y) = [∆x∆y]Q(x, y)

[
∆x
∆y

]
where S(x, y; ∆x,∆y) is the approximated sum of squared differences between the image
patch at (x, y) and at (x+ ∆x, y + ∆y) and where

Q(x, y) =
∑

(u,v)∈W (x,y)

w(u, v)

[
Ix(u, v)2 Ix(u, v)Iy(u, v)

Ix(u, v)Iy(x, y) Iy(u, v)2

]
=

[
A B
B C

]
is the Harris matrix at (x, y). This matrix contains a sum of the squared image par-
tial derivates over the template window W (x, y) centered at the image location, where
each partial derivative term is weighted according to the window weight w(u, v) (which
can either be a guassian or a constant factor). Harris corners are characterized by loca-
tions which have two large eigenvalues λ1λ2 in the Harris matrix. Instead of performing
eigen value decomposition we will use the alternative formulation for checking this trait
proposed by Harris:

H(x, y) = λ1λ2 − 0.04(λ1 − λ2)2 = AC −B2 − 0.04(A+ C)2 (1)

which is known as the Harris response for a point at (x, y).
In this exercise your Harris corner detector will implement the OpenCV feature detector
interface as specified by cv::FeatureDetector so your implementation can easily be com-
pared with other feature detector implementations present in OpenCV, see http://docs.
opencv.org/modules/features2d/doc/common_interfaces_of_feature_detectors.html.

• In the file HarrisDetector.hpp create a class HarrisDetector that derives from
cv::FeatureDetector.

• The class should initially contain member variables for storing the window size
and threshold parameters of the Harris corner detection algorithm.

• Create a protected member function for computing the Harris corner response ex-
tracting key points. The function should have the following signature:
void harrisCorners(const Mat& image, vector<KeyPoint>& keyPoints)

where image is an input grayscale image and keyPoints an output parameter.

– In this function calculate the matrices A, B, and C for each valid point:

A(x, y) =
∑
W

Ix(x, y)2, B(x, y) =
∑
W

Ix(x, y)Iy(x, y), C(x, y) =
∑
W

Iy(x, y)2

whereW is the weighted window sum as determined by the window size param-
eter, see http://docs.opencv.org/modules/imgproc/doc/filtering.html#

boxfilter and http://docs.opencv.org/modules/imgproc/doc/filtering.

html#gaussianblur.

3

http://docs.opencv.org/modules/features2d/doc/common_interfaces_of_feature_detectors.html
http://docs.opencv.org/modules/features2d/doc/common_interfaces_of_feature_detectors.html
http://docs.opencv.org/modules/imgproc/doc/filtering.html#boxfilter
http://docs.opencv.org/modules/imgproc/doc/filtering.html#boxfilter
http://docs.opencv.org/modules/imgproc/doc/filtering.html#gaussianblur
http://docs.opencv.org/modules/imgproc/doc/filtering.html#gaussianblur

Robot Vision Course WS 2013/14 - Assignment 1

– Calculate the Harris response at each valid point using equation 1. Determine
the maximum Harris response value Hmax.

– For each point (x, y) where the Harris responseH(x, y) is above threshold∗Hmax,
add a new cv::KeyPoint instance to the keyPoints output parameter. In the
case of a very low threshold, it is generally a good idea to only consider points
whose Harris response exceeds a certain absolute minimum value, such as 10.0.

• Implement the required member function from cv::FeatureDetector:
virtual void detectImpl(const Mat& image, vector<KeyPoint>& keypoints,

const Mat& mask=Mat()). This function should initially just call the protected
member function harrisCorners.

• Create a function drawKeyPoints that takes as input an OpenCV image and an
array of key points and draws a circle at each key points location on the image.

• Modify the FeatureDetectorNode class by adding a member variable of type
boost::shared ptr<cv::FeatureDetector>. In the constructor initialise this mem-
ber with a pointer an instance of your HarrisDetector class.

• Modify the imageMessageCallback member function so that it extracts Harris key
points using the newly added cv::FeatureDetector pointer member variable. Be-
fore performing feature extraction the image should be converted to gayscale. It
should then use the drawing function to draw the detected features on the output
image.

You may NOT use any of the OpenCV corner detection functions! However, you may
use the Sobel, Gaussian or Convolution filters as well as any of the drawing functions.
Test your implementation using the bag files listed in Exercise 0.

4. (Dynamic Reconfigure) Now its time to get to know a very useful piece of ROS infrastruc-
ture: dynamic reconfigure, see http://wiki.ros.org/dynamic_reconfigure/Tutorials.
Here you are going to make the your FeatureDetectorNode and with it your HarrisDetector
respond to parameter changes at run time.

• Create a new directory named cfg in the your package. Create a new dynamic
reconfigure file in that directory named FeatureDetectorConfig.cfg and make
this file executable. Add an integer parameter window size and a floating point
parameter threshold, the parameters used by the HarrisDetector class.

• Make the appropriate changes to the your package’s CMakeLists.txt file for dy-
namic reconfigure as indicated by the tutorials.

• Modify the FeatureDetectorNode class by adding a new member variable of type
dynamic reconfigure::Server class. Add a new member function updateConfig

for receiving callbacks of type FeatureDetectorConfig from the dynamic reconfig-
ure server. In this function you should create a new instance of your HarrisDetector
class with the updated parameters and then assign this pointer to your
boost::shared ptr<cv::FeatureDetector> member.

Test your implementation using the rqt reconfigure tool.

Exercise 2 Improved Harris Key Point Detection

1. (Fixed number of points) Up until now you have implemented a Harris key point detector
that outputs a variable amount of points depending on the strength of the Harris response
function H(x, y) and the threshold parameter. For many robotics use cases, such as
visual odometry and localization, it is preferable for the key point detector to always
return a fixed number of key points.

4

http://wiki.ros.org/dynamic_reconfigure/Tutorials

Robot Vision Course WS 2013/14 - Assignment 1

• Add a member variable for storing the number of points to your HarrisDetector
class. Add a flag for determining whether to perform thresholding or return a fixed
number of key points.

• Implement a member function in HarrisDetector that takes an array of key points
as input and returns a second list of key points of size number of points that
contains the strongest Harris key points.

• Move the thresholding filtering to a separate member function.

• In detectImpl perform either thresholding or return a fixed number of points de-
pending on the flag.

• Make the parameters modifiable at runtime using dynamic reconfigure by extend-
ing your existing configuration file.

2. (Multi Scale Detection) To make the feature detector more robust against camera move-
ment and the resulting scale changes in the scene you will implement a simple form of
key point scale estimation using image pyramids.

• Add a parameter to your HarrisDetector class: octaves, the number of image
octaves to use for feature extraction.

• Extend your detectImpl implementation to create an image pyramid using the
OpenCV function cv::pyrDown that has the appropriate number octaves. For
each octave in the pyramid call your protected member function harrisCorners
with the scaled down image.

• Add a parameter to your harrisCorners member function indicating which octave is
being processed. Make sure to include this information in your key point generation.

• Once all octaves have been processed, perform filtering on the key points from all
the octaves together.

• Extend your key point drawing function to draw key points according to their octave.

• Make the octave parameter dynamically reconfigurable

3. (Adaptive Non Maximal Suppression) Another method for improving the robustness of
the feature detector is based on the idea of having the key points more evenly spread
throughout the image, a technique known as Adaptive Non Maximal Suppression. With
a threshold approach, key points with the highest response are often clumped together
in the image. With ANMS instead of taking key points with highest response, key points
are chosen that are locally maximal inside of a radius ri around the point xi as specified
by the formula:

ri = min
j
|pi − pj | where H(pi) < crH(pj) pj ∈ I

where H(p) is the Harris response at a point p = (x, y) and cr < 1 a constant ensuring
that the next largest neighbor is significantly larger to cause suppression (typically a value
of 0.9 is used). In other words we are looking for key points with the largest radius to
the next significantly larger neighbor, which will result in the accepted key points being
more evenly distributed throughout the image.

• Extend your HarrisDetector implementation by adding an additional filtering
member function for adaptive non maximal suppression similar to the threshold-
ing and fixed number of points filters.

• Your ANMS implementation should start by sorting the key point candidates array
according to their response strength.

5

Robot Vision Course WS 2013/14 - Assignment 1

• The point with the strongest Harris response is always in the output array. Starting
with the point with the second strongest response, you need to calculate the distance
to all points with a significantly higher response. The minimum distance for each
point to a point with a significantly higher response should be saved.

• After processing each point return the points with the largest minimum distance.

• Your implementation should support two dynamically reconfigurable parameters:

– ANMS: a boolean parameter determining whether ANMS is used.

– ANMS points: The number of key points your ANMS function should output.

4. (Orientation Estimation) Aside from location and scale information most robotics appli-
cations involving key points require estimation of the relative orientation with respect to
the scene.

• Extend your HarrisDetector implementation to additionally output the orientation
with each detected key point. The orientation θ of a key point at (x, y) can be
estimated by the local image gradient vector ∇I(x, y) where:

θ = arctan

(
∇xI(x, y)

∇yI(x, y)

)
To improve the robustness of the orientation estimation it may be necessary to use
a finite difference operator ∇ with a larger kernel size. For improved accuracy you
should use the atan2 function.

Exercise 3 OpenCV Feature Detectors

1. (Comparison) Extend your FeatureDetectorNode to support other OpenCV feature de-
tectors that implement the cv::FeatureDetector interface, for example the
GoodFeaturesToTrackDetector that also uses Harris corner detection. How does your
HarrisDetector compare?

6

