
Robot Vision Course WS 2013/14 - Assignment 3

Lab Course: Robot Vision WS 2013/2014
Philipp Heise, Brian Jensen

Assignment 3 - Due: 04.12.2013

In this assignment sheet, you are going to work with stereo data and RGBD data. The goal is
to create a motion estimation system referred to as Visual Odometry, for use with calibrated
stereo or RGBD data. You will be using a class of techniques typically known as Structure
from Motion (SfM) in the computer vision community or Visual Simultaneous Localization
and Mapping (VSLAM) in the robotics community. You will be working with the KITTI
dataset for stereo (http://www.cvlibs.net/datasets/kitti/) and the TUM-RGBD datasets
(http://vision.in.tum.de/data/datasets/rgbd-dataset/download) for RGBD input.
We packed the necessary content of the KITTI dataset into bag-files for usage within ROS,
which can be downloaded here: http://www6.in.tum.de/~jensen/rvc/stereo_data/

ATTENTION: there was a typo in the bag file generation, so the topic name for the stereo
frame unfortunately is kitty instead of kitti

NOTE: All the Kitti datasets contain rectified images. If you use other datasets you will likely
need to perform stereo rectification prior to any of the processing steps in this sheet.

Exercise 1 Sparse Stereo Matching

The first step in the your visual motion estimation process is to estimate the 3D position for
a sparse set of robustly matched points between the left and right views of a calibrated stereo
system.

1. (Visual Odometry Package)

• Create a new package named <GroupName> vo within your repository. You are going
to reuse your feature detectors and descriptors from the last sheet, so you should
make your new package depend on your previous packages.

2. (Synchronized Stereo Subscription) Subscribe to the two image topics together with the
associated camera info topics in a synchronized manner, similar to the last sheet.

• Use http://www.ros.org/wiki/message_filters to achieve time synchronous sub-
scription.

• There is also a special and useful class for stereo calibration data (StereoCameraModel)
in the image geomerty package: http://www.ros.org/wiki/image_geometry. This
class has some handy methods for converting between disparity and depth values
given the camera info calibration data.

3. (Feature Detection)

• Use your Feature detector as well as your feature descriptor implementation from
the previous assignment sheets to extract features from both input images at each
time step.

1

http://www.cvlibs.net/datasets/kitti/
http://vision.in.tum.de/data/datasets/rgbd-dataset/download
http://www6.in.tum.de/~jensen/rvc/stereo_data/
http://www.ros.org/wiki/message_filters
http://www.ros.org/wiki/image_geometry


Robot Vision Course WS 2013/14 - Assignment 3

• All important parameters governing your implementation should again be available
over dynamic reconfigure (e.g. by reusing the your nodes from the previous sheets
where appropriate).

4. (Feature Matching and Disparity Computation) In order to compute disparity values, you
need to find correspondences in the stereo frames. We’ll do this by matching features
from the left frame to features in the right frame:

• Match the extracted features from the left image to the right image from the same
time step. Implement a stereo-matching strategy, which makes use of the additional
constraint that feature matches must be in the same horizontal line in both images
(epipolar constraint in rectified stereo).

• Disparity should be within a useful range. Range thresholds should configurable
using dynamic reconfigure as minimum depth and maximum depth in meters.

• Experiment with different techniques to speed up and improve your implementation,
for example:

– Create a row lookup table for your features.

– Preemptively exclude features matches that are outside of valid disparity range.

– Reciprocal Matching: Perform consistency checking: match from left to right
and from right to left, only accepting consistent matches.

– Soften the requirement that features matches must be in the same line. (e.g.
+/- 1 line)

Choose the parameters and implementation that deliver the best results.

• Create 3D points from your matches using the left matching point’s x, y and disparity
value (You can use functions of the StereoCameraModel).

5. (PointCloud publishing) To check the result of your ”triangulation”, publish a pointcloud
and visualize it in rviz.

• Publish a PointCloud2 message from your sparse set of matched feature points:
http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html.

• Make sure to set your frame ids correctly (set it to an existing tf frame, e.g. start
or the frame id of the left camera message)

Exercise 2 Temporal Feature Matching

The next phase of your 3D motion estimation implementation involves taking the robustly
matched 3D points gathered at each time step and finding correspondences between the left-
right feature matches at the previous time step with left-right feature matches at the current
one.

1. (Windowed Matching) A useful assumption for tracking features throughout images is
that their positions will only change gradually. Therefore a typical approach is to con-
strain the matching between features to a certain window around a predicted (or the
previous) position. You will implement a matching strategy, that finds the closest match
for a given left-to-right feature correspondence from the last frame within a user specified
radius. Experiment with different matching strategies, for example:

• Use descriptors from left and right image while enforcing the epipolar constraint.

• Use a reciprocal matching (see stereo description)

At the end of this stage, you should have a set of 3D-3D Point correspondences between
two time steps.

2

http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html


Robot Vision Course WS 2013/14 - Assignment 3

2. (Visualization of the 3D Matches) To visualize your results, draw your matches side by
side into an image augmented with the appropriate views. For the temporal matching
you can e.g. draw the movement of the features as small lines (flow). For stereo you can
e.g. also draw lines between the matched positions of the two images.

Exercise 3 3D Pose from Correspondences

1. (3D pose estimation) Use the method of Umeyama to compute the 3D pose between
consecutive frames. A nice overview is presented Szeliski ”Computer Vision: Algorithms
and Applications” chapter 6.1.5. A more detailed explanation can be found in the original
publication ”Least-squares estimation of transformation parameters between two point
patterns” (http://cis.jhu.edu/software/lddmm-similitude/umeyama.pdf).

• Use the method of Umeyama to compute the euclidean transform that maps from
the previous time step to the current time step

T step
step−1 =

[
R t
0 1

]
• Maintain a a cumulative transform that maps from the world coordinate system to

the camera coordinate T camera
world .

• Make sure to initialize the cumulative transform with an appropriate value for the
data set (for the KITTI data sets this would be the identity).

2. (Robust estimation) In order to cope with possible outliers primarily due to incorrect
3D-3D correspondences and prevent incorrect point cloud estimates a naive version of
RANSAC is helpful. A user specified number of iterations with random minimal subsets of
the 3D-3D point correspondences are performed and in each iteration the set of all 3D-3D
correspondences is partitioned into subsets consisting of inliers and outliers according to
some distance metric. Correspondence distances below a user specified distance threshold
are then considered inliers and all others outliers. After completion the largest subset of
inliers is then used to calculate the final 3D pose estimate.

• Perform this n times:

– use the matched 3D point correspondences from the previous exercise

– select a minimum subset of matches randomly (3)

– compute the pose using the the subset

– calculate the number of correspondence inliers that are below the distance
threshold

– if this result has more inliers than current best, remember these inliers

• recalculate the pose from the largest subset of inliers.

3. (Pose Publishing)

• Use the tf or tf2 ROS package to publish your current camera pose estimate
T camera
world .

• Make sure to use the correct stamp when publishing your camera pose estimate.

• Compare the movement of your tf frame with the one published within the bag files
(e.g. by observing it in rViz)

Exercise 4 RGBD Visual Odometry (Optional)

Now you are going to modify your visual odometry pipeline from the previous exercises to
work with data from RGBD cameras such as the Kinect that have become quite popular in

3

http://cis.jhu.edu/software/lddmm-similitude/umeyama.pdf


Robot Vision Course WS 2013/14 - Assignment 3

the robotics community in the last years. Essentially you simply skip disparity computation
step since RGBD sensors directly estimate a depth value for almost all pixels in the image and
perform only the temporal feature matching and 3D pose estimation.

1. (RGBD Visual Odometry Pipeline)

• Create a new executable for performing RGBD visual odometry.

• Since the depth and color images are not published synchronously with the Kinect
you should use the Synchronizer and ApproximateTimePolicy classes from the
message filters package to achieve approximate time synchronisation.

• Use the PinholeCameraModel class from the image geometry package for handling
the image calibration parameters necessary for obtaining 3D points.

• Extract key points from the color images taking care to filter out key points where
there is no depth information available.

• Reuse your temporal matching and pose estimation from the previous exercises.

• Test your implementation with some of the TUM-RGBD benchmark datasets.

4


