Applied Computer Vision for Robotics 16102013
 PhilippHeise
 Briandensen
 Sebastian Klose

GitHub

* Find together in grouips of 3 people
- Everyone needs to create a Git hub: account http://github:com
- Write a mail to ensen@initumide containing:
- team name (be creative here)
, real name, Github account name and e-mail address for each team member

Syllabus

* New sheet every 2 weeks
- Mandatory meeting every week
- Short presentation of the sheet resuits by the teams
- Everyone wil be registered to a RVC mailing list - ask questions here
- You can also ask us questions or write mails

ROS

- We are going to use ROS. Robot Operating System (www.ros.org)
- We il introduce t on the fly and give hints which packages you might need
- Check out the tutorials and wiki on ros org for more details

Cameras

- If you don't have an own camera working in ROS, you can borrow one from us
- PSEye Gamera- 640×480 @60Hz
\checkmark Deposit 10 e

Harris

* Detect image corners
* Calculate structure tensor
- Be careful about the mage data types
- Use the eigenvalues, λ_{1}, λ_{2} to calculate the corneress"

Harris

:
 IIII

Harris

* Use the Harris-Stephens formula to avoid the exact computation of the eigenvalues

$$
\begin{aligned}
& \mu_{c}=\lambda_{1-2} \lambda_{2}<\left(\lambda_{1}, \lambda_{2}\right)^{2} \\
& \text { cet }(M) \text {, rtrace }(M)
\end{aligned}
$$

Kappa is a parameter and can be tuned to get reasonable results
\checkmark Threshold to get corners and perform non-maximum suppression

Scale Space

* Perform Harris corner detection on different scales
- Create an mage pyramid witha scale factor ((1) and a fixed number of octaves
- Detect the corners in each octave

Orientation

* Find the orientation of each corner
- Compute the angle using

ANMS

- Very often the detected features are not well distributed over the image
- Instead of using a fixed threshold ANMS uses only non maximum suppression within a certain radius

