Industrial Embedded Systems
- Design for Harsh Environment -

Dr. Alexander Walsch
alexander.walsch@ge.com

IN2244
Part |l
WS 2013/14

Technische Universitat Munchen

mailto:alexander.walsch@ge.com

How the customer explained it

Motivation
- What the Customer really needed -

How the Project Leader How the Analyst designed it How the Programmer wrote it
understood it

How the Business Consuliant
described it

How the project was
documented

How the customer was billed How it was supported

Source: http://www.bowdoin.edu/~disrael/what-the-customer-really-needed/what-the-customer-

really-needed.jpg

A. Walsch, IN2244 WS2013/14

2

Requirements Engineering

Requirements are features of a system or system function used
to fulfill the system purpose.

Feasabilit RGeS Requirements R ' t

y Elicitation and ——» ~oduiren —p- Tequirements

Study . Validation Specification
Analysis

A. Walsch, IN2244 WS2013/14

Requirements Engineering Il

The requirements elicitation and analysis phase of embedded
system development is about:

Getting all system functions together

Showing scope, usage, and constraints (performance, environment,
regulation, threats, etc.) of the proposed system

Get a good understanding on effort and system architecture (risk
reduction)

Wrong (e.g. missing, contradicting) information will make us fail
at a very cost intensive level — validation

Once all information are available and validated the
requirements are translated into a requirements specification
which is a technical document for further development (metrics
and defined format on all requirements)

A. Walsch, IN2244 WS2013/14

Requirements Elicitation and Analysis

How do we get all these requirements?

Involves technical staff working with customers or users to find
out about the application domain (field technicians), the
services that the system should provide and the system’s
operational constraints.

May involve end-users, our customers, managers, engineers
iInvolved in prior development and/or maintenance, domain
experts, certification bodies, etc. These are called
stakeholders.

Also non-functional requirements can be discovered in a
systematic way (QFD, FTA, RBD, PHA, ..))

A. Walsch, IN2244 WS2013/14

Challenges in Requirements Analysis

Stakeholders don’t know what they really want.

Stakeholders express requirements in their own terminology —
maybe not precise.

Different stakeholders may have conflicting requirements.

Political factors may influence the system requirements (e.qg.
disasters).

The requirements change during the analysis process.

Some requirements might be common sense and not explicitly
mentioned.

A. Walsch, IN2244 WS2013/14

Requirements Validation

- Validity

Does the system provide the functions which the customer
expects?

Consistency
Are there any requirements conflicts?

Completeness
Are all functions required by the customer included? Are more
functions included?

Realism
Can the requirements be implemented given available budget
and technology -> feasibility?

Verifiability
Can the requirements be tested?
A. Walsch, IN2244 WS2013/14

Traceability

Traceability

Traceability is concerned with the relationships between
requirements, their sources and their design implications.
Traceability can be a requirement itself.

Source traceability

Links from requirements to stakeholders who proposed these
requirements

Requirements traceability
Links between dependent requirements
Design traceability

Links from the requirements to the design
A. Walsch, IN2244 WS2013/14

Requirements Specification Structure

Typical document layout:

Requirement Specification

1. Objective

2. System Description (boundary, interfaces, major
components)

Functional Requirements

. Non-functional Requirements

Mechanical Constraints

Environmental Constraints

RAMS (safety in a separate document)

NoO U AW

All requirements get numbers which allow forward and
backwards tracing.

A. Walsch, IN2244 WS2013/14

Non-functional Requirements

There are basically two kinds of requirements:

Non-functional (quality)
Functional (operations — |0O)

We will look into tools that help to gather requirements for
Safety: hazard analysis, fault trees (FTA), risk assessment (quality)

Reliability: (failure mode and effect) FMEA, FTA

There are more non-functional requirements which will not be
covered.

A. Walsch, IN2244 WS2013/14

10

Non-Functional Requirements

Non-Functional Requirement
Constraints on implementation — How should the system be?

Includes

Global constraints that influence system as a whole (shock,
vibration, temperature, cost...)

Function performance (response time, repeatability, utilization,
accuracy)

The “-ilities” (reliability, availability, safety, security,
maintainability, testability, ...)

Other quality (ease of configuration and installation, ...)

A. Walsch, IN2244 WS2013/14

11

Non-Functional Requirements Capture

Look at system as black-box and concentrate on a specific use
case

Look at real-time aspects
response time, sampling rate

Data quality
accuracy, precision

Refine functional requirements — make more specific and
testable

Look at comparable systems (prior art, competitors)
Safety (new laws or regulation) and reliability
Hardware constraints (memory, CPU, 10)

A. Walsch, IN2244 WS2013/14

12

Non-Functional Requirements
- Textual Examples -

“Pressure samples shall be taken every 1s.”

“The response time for pressure measurement shall be less than
10ms.”

“Reliability: 1000 FIT”

“The measurement shall have an accuracy of 2%.”

“The measurement shall be repeatable with a precision not less
than 0.5%.”

“The system shall meet the safety criteria according to [std.].”

Reference value
F 3

Probability Accuracy
density B >

Source:
wikipedia

-

) Precision > Value
A. Walsch, IN2244 WS2013/14 13

Quality Function Deployment (QFD)

QFD is a systematic way to correlate the relationship between
customer requirements and technical requirements.

QFD is based on a sequence of matrix charts.

QFD has been introduced for quality planning in
manufacturing (Akao 1960s) but is a general methodology that
can also be applied to computer system design.

Requirements Flow-Down

QFD 1 == -J.____f[niagﬁﬁ___? —> Definition Phase

| Desion Requirements | e |y
gn Requiremen Requirzments 1 Manutactunng

. Requirements

QFD 2 —> m > Concept Phase %E QFD 1 ¥
— 83 §5l| QFD 2 :
; i oo

Desi
QFD 3 =—> ™54 _ =2 Realisation Phase Requsement

Part
Targets A Manufacturing

H.Eq.II'ElT'IEI'Tt c
Manufacturing Requirements <1_____ Targets RE.‘?""FE”'E”" Froducicn
B g Requirernent

QFD 4 —> m £ Delivery Phase — . o Tagets

Production Requirements T — —Il
——

Source: Borge, A
functional approach to A. Walsch, IN2244 WS2013/14 14

QFD

Producion
Reguirsments

| QFD 4

QFD for Software

QFD needs to be adjusted to reflect embedded software
development.

Customer requirements — requirements as received from
customer

Design requirements — Software technical requirements
(functions)

Part requirements — Architectural requirements (coarse
design, larger entities, look at cohesion and coupling)

Manufacturing requirements — Detailed Design (functions,
classes, algorithm, data)

Production requirements — Implementation (coding details,
code quality)

A. Walsch, IN2244 WS2013/14

15

QFD Example
- See Whiteboard -

Development of a smart meter

Customer requirements:

- |Inexpensive
— Secure and reliable LIST 2 of Requirements
- Measures voltage and current 18 |5 |5
_ ftem 1 o lo | |-
- Wireless comms —
. 2 [em
- Powerline comms o ° 1
‘E.E ltem 4 o | a
_ I = 2.
Display 5 g
indicates a strong relationsh 3 |B|E |2
O ndicatesamesim T 3<| 8a 30| 8o
A indicates a weak relationship 25 2§l ek Eg
2ol 2ol ol 2
R LIST 3 many-to-one related with List 2
Source: Borge, A priority

functional approach to
QFD A. Walsch, IN2244 WS2013/14 16

Fault, Error, Failure

Fault (HW), Defect, Bug (SW)
abnormal condition that may cause a reduction in, or loss of, the
capability of a functional unit to perform a required function

Error (revealed fault)
a deviation from the correct value or state

Failure
Failure is defined as deviation from the specification. The
designed function can not be executed anymore as specified.

Failure Mode
A function can fail in various ways. In our analysis we pick the
failure mode that leads to the failure we investigate.

A. Walsch, IN2244 WS2013/14 17

Fault, Error, Failure Il

- Hardware faults can be random or systematic. Software defects
are systematic

- Hardware faults can be thought of as physical faults, e.g. a bit
flips, a wire breaks. Software defects are mistakes during
development

- Faults and defects are dormant until the resource is used (think
of a software task that executes specific code for the first time)

- Once it is used it may cause an error which is a deviation from
the expected

 The error may make the system deviate from its specification. It

IS running outside its intended use
A. Walsch, IN2244 WS2013/14

18

Failure Modes

Function:

A process variable is measured (input) and the temperature
compensated reading transmitted using a 4 — 20 mA data
communication interface (output).

The following failure modes and occurrences are known. What
failure modes do influence our design most?

Failure Mode Failure occurance

4 — 20 mA current signal stuck Low
fail (output)

4 — 20 mA current signal low Low
fail (output)

Sensor head fail (input) Medium
Power failure High
Other low

A. Walsch, IN2244 WS2013/14 19

Failure Modes and Effect Analysis (FMEA)

System FMEA in requirements analysis (proposed system)
Also: Design FMEA (existing system)
What are the failure modes and what is the effect:

System failure (e.g. power, communication, timeliness, erroneous) mode
assessment

Plan how to prevent the failures
How does it work?

|dentify potential failure modes and rate the severity (team activity)

Evaluate objectively the probability of occurrence of causes and the ability to
detect the cause when it occurs

Rank failure modes and isolate the most critical ones

A. Walsch, IN2244 WS2013/14 20

FMEAII

FMEA tools

Spreadsheet, proprietary (e.g. Reliasoft Xfmea)
Risk ratings: 1 (best) to 10 (worst)
Severity (SEV) — how significant is the impact
Occurance (OCC) - likelihood of occurance
Detection (DET) — how likely will the current system detect the failure mode

Risk Priority Number (RPN)

A numerical calculation of the relative risk of a particular failure mode
RPN = SEV x OCC x DET

Used to isolate the most risky functions and their failure modes

Qualtitative approach (risk ratings are relative numbers)

A. Walsch, IN2244 WS2013/14 21

FMEA il

Function — What is the system going to do?

Failure — How could the function fail?

Effect — What could be the outcome of the failure?

Cause — What could be the cause of the failure?

Function Failure Effect Si Cause Oi Control Control Type | Di |RPNi
Functionl Failure mode 1 Effectl 2 |Causel 9 |Detectionl Detection 6 108
Failure mode 2 Effect2 8 |Cause2 2 |Detection2 Detection 6 96
Failure mode 3 Effect3 1 |Cause3 3 |Detection3 Detection 6 B
Function2 Failure mode 1 Effectl 6 |[Causel 7 |Detectionl Detection 6 252
F ailure mode 2 Effect2 1 |Cause?2 2 |Detection2 Detection 6 R
A. Walsch, IN2244 WS2013/14 22

FMEA Example

- See Whiteboard -

We will take the software technical specification from QFD and
derive possible failures, causes and detection mechanisms.

The intent here is to specify additional non-functional software
requirements.

When thinking about software failures consider this:

Quality

Description of Quality

Accuracy

The term accuracy denotes the degree of freedom from ervor of sensor and
operator input, the degree of exactness possessed by an approximation or
measurement, and the degree of freedom of actuator output from ermror.

Capacity

The terms capacify denotes the ability of the software system to achieve its
objectives within the hardware constraints mposed by the computing

em being used. The main factors of capacity are Execution Capacity
(timing) and Storage Capacity (sizing). These refer, respectively, to the
availability of sufficient processmg time and memory resources to satisfy
the software requirements.

Functionality

The term finctionality denotes the operations which must be carried out by
the software. Functions generzlly transform input information info output
information in order to affect the reactor operation. Inputs may be obtained
from sensors, operators, other equipment or other soffware as appropriate.
Qutputs may be directed to actuators, operators, other equipment or other
software as appropriate.

Feliability

The term reliability denotes the degree to which a software system or
component operates without failure. This defmition does not consider the
consequences of failure, only the existence of failure. Rehability

ay be denved from the general system reliability
imposing reliability requirements on the software
components of the application system which are sufficient to meat the
overall system reliability requirements.

Fobusmess

The term robusmess denotes the ability of a software system or component
to function comrectly n the presence of invalid inputs ressful
environmental conditions. This includes the ability to function comectly
despite some violation of the assumptions in its specification.

Safety

The term sqfety is used here to denote those properties and characteristies
of the software system that directly affect or interact with system safety
considerations. The other qualities discussed in this table are important
contmbutors to the overall safety of the software-controlled protection
system_ but are primanly concerned with the internal operation of the
sofrwrare. Thiz quality is primarily concerned with the affect of the soffware
on system hazards and the measures taken to control those hazards.

Security

The term securify denotes the ability to prevent unzuthorized. undesired
and unsafe intrusions. Security is a safety concem n so far as such
infrusions can affect the safety-related functions of the software.

Source:
Software Safety Hazard
Analysis, J. Lawrence, LBLL

A. Walsch, IN2244 WS2013/14 23

Reliability Block Diagram (RBD)

We need two things to compare different architectures (in EE):

A probabilistic model — probability law

A notation — Reliability Block Diagram (RBD) which assume probabilistic
independent blocks

Each block has a defined function, a failure mode with a failure rate

A system function can be spread across different blocks (think of blocks
as components)

Source:
Smith: Reliability, Maintainability and Risk A

A. Walsch, IN2244 WS2013/14 24

RBD Example
- See Whiteboard -

A. Walsch, IN2244 WS2013/14

25

Fault Tree Analysis (FTA)

Top event is failure mode (system or function)

Devide system functions into sub-functions (functional

decomposition) or system into components (component
decomposition)

Look into combinations of faults (strength of FTA)
Tree like structure using combinatorical logic
Paths of Failure

Outcome:

Root cause event (external, internal) that (in combination) will lead
to top event — failure modes of sub-functions or components

Good system understanding — very useful if applied to existing
systems to isolate reljgQlity, I58Y8Sys2013/14 26

FTA Il

+ FTAis semantically equivalent to Reliability Block Diagram (RBD)

System
Fail

Fault tree Reliability block diagram

Y
T g

/}\ Parallel (redundant)
e [o -

l/[B Series T

53000 660 &

LIRC)

A. Walsch, IN2244 WS2013/14 27

Source:
Smith, Functional Safety

FTA Example
- See Whiteboard -

A. Walsch, IN2244 WS2013/14

28

Where are we?

We know that there are critical requirements that influence our
proposed system

Criticalilty can be derived from FMEAs and FTAs (there are other
methods as well)

Criticality can be quantified such that
- Architecturural or technology decisions can be made.

Concepts are derived from EE hardware engineering. A discipline
more mature than software engineering.

A. Walsch, IN 2244 WS2013/14 29

Failure Rate (Hardware)

Failure Rate

A time dependent measure of #failures/time. Commonly only
random failures are considered. The symbol for failure rate is A(t).
A failure rate is tied to a failure mode. This is a hardware related
metric.

Source:
Failure
rate Smith: Reliability, Maintainability and Risk
Early
fail
Useful life
Time
Figure 2.4
| I
Burn-in | Useful life | W t

| |

I |

| |
Failure Overall curve 7 |
rate .,) |

Random failures 7
I Z | .
T Early | | Vd
‘fallu_re_"s."“ [= Wearout
— e — — _l_..__—u——— _____ Pooeenn failure

A. Walsch, IN2244 WS2013/14 30

Failure Rate (Software)

A failure has been defined as deviation from the specification. This
deviation can happen in two ways

Random (Hardware only) — happen randomly in time. The rate is predictable
(statistical quantification). Previous slide.

Systematic (Hardware and Software) — linked to a certain cause (fault,
defect, bug) which is present at time of commissioning

They are not predictable. A rigorous design and qualification process must
be applied.

On change (e.g. software update the error rate may increase)

Source:
Smith: Reliability, Maintainability
and Risk

Error

rate -
Change

TIME ——i—

A. Walsch, IN2244 WS2013/14 31

Reliability

Reliability

Reliability of a system or component is defined to be the
probability that a given system or component will perform a
required function under specified conditions for a specified period
of time.

“probability of non-failure (survival) in a given period”

Reliability of a system function is modeled as:
R(t)=¢""if the failure rate is constant.

A is often expressed as failures per 10° hours or FIT (failures
per 10° hours).

If “At” small then R(t) = 1 - At

A. Walsch, IN2244 WS2013/14 32

Mean Time Between Failure (MTBF)

MTBF
Mean Time Between Failures (MTBF) is the average time a
system will run between failures. The MTBF is usually expressed

in hours.

Let us consider N items with k having failed at time t, T being the
cumulative time.

N (t)=N —k ; number surviving at time t

N (1
N
total fN
0
MTBF :0= | 2\5)dt:fR(z)dt:fe‘“dt
0 0 0

O©=\"" A=const. A. Walsch, IN2244 WS2013/14 33

MTBF |

The observed MTBF (not all items have failed but k):
T

@z; T = total time, k = failed items (total N)

A. Walsch, IN2244 WS2013/14

34

Relation between Reliability and MTBF

t=@=>R=¢ '~0.37
t=20=>R=¢ *~0.14

A

Reliability |

R(t)
0.8

0.6

0.4

0.2

A. Walsch, IN2244 WS2013/14

Failure Rate Example

A system (S) has 10 components. Each component does have a
failure rate of 5 per 10° hours (5000 FIT). Calculate the failure rate
and MTBF of a function. Consider two cases:

- All components are required to perform the function (single point
of failure).

- Each component performs a different function. Calculate the
metrics for any of the functions.

We assume that there is only one failure mode for the component.

A. Walsch, IN2244 WS2013/14 36

Failure Rate Example Il

A) All components are required to perform the function (single
point of failure)

A, = 5000 FIT

=10 * 5000 FIT = 50000 FIT (5 * 10™ failures/hour)
MTBF = 20000h

function

B) Each component performs a different function

A=A

function

= 5000 FIT = 5 * 107 failures/hour; MTBF = 200000h

A. Walsch, IN2244 WS2012/13

37

MCU Example

Reliability Report - 2nd Quarter 2013 (CY) Publish Date: 12 Sep, 2013
Reliability Die Monitor : (=2 Process Description - Windows Internet Explorer E=R
Search by Device : | | m |ﬁ\ http:/fwawew . microchip.com/reliabilityreport/ProcessDescription.asp §|
OoR Dynamic Life Test
The Dynamic life test {DLT) also known as the High Temperature Operating Life
Devi Torc (HTOL) is performed to defermine the reliability of devices subjected to specific
EEIHD L b |-|:I5PICE-3F EI condifions over an extended perods of time. Devices are exercised at the
oR maximum data sheet operating voltage. In addition, an elevated temperature and
functional signals are used to exercise the device in a manner similar to user
systems. Devices are subjecied to 150C for 96 hours (infant) and 408 hours
Search by Process : |—Select a Process— [=] (Long term). The actual failure rate experienced could be considerably less than
that calculated if lower device temperatures oceur in the application board.
Reliability Package Monitor :
Search by Package : |QFN I

Dynamic Life Testing

Stress Temperature : 150 degrees C

Derated Temperature : 55 degrees C]
Activation Energy : 0.7 eV
Acceleration Rate I
|
Hours 96 Hours 408 Hours Total Life FIT Rate 60%
Sample Fails Hnura Confidence ["I'ears] "
YTD-13 o 3,080 3 075 1,255,080 3 40,509 i
Raolling %'r -
1 6,158 1] 5,141 2,907,160 3 36,665
dsPIC33F 12113 ' !
CUM 09-13 o] 26,163 4 24 947 10,295,112 2 58,143
QRT-13 o 1,630 1] 1,675 653,380 5 22,073

A. Walsch, IN2244 WS2012/13 38

Mean Down Time (MDT)

MDT

Mean Down Time (MDT) is the average time a system is in a
failed state and can not execute its function.

MTBF can be understood as the mean up time.

MTTR

Mean Time to Repair (MTTR) is overlapping with MDT. Used for
maintenance calculations. It can be visualized as the average time
it takes (a technician) to repair the system such that it is up again.
We will not use MTTR in this lecture anymore.

For software the equivalent would be the time it takes to make a
modification (e.g. bug fix, update) and install the new software
function.

A. Walsch, IN2244 WS2013/14 39

Availability

Availability

Availability is the probability that a system is functioning at any
time during its scheduled working period (in percent).

J=_up time _ up time _ MTBF
total time uptime+downtime MIBF+MDT

Reliability vs. Availability:

Reliability is inherent to a function given its specified conditions
(internal properties). Availability takes failure and repair into
account (internal and external properties).

A. Walsch, IN2244 WS2013/14

40

Unavailability Example

A = 10°° failures/hour : MDT = 10h

Unavailability = ?

A. Walsch, IN2244 WS2013/14

41

Unavailability Example

A = 10°° failures/hour : MDT = 10h

Unavailability = ?

[= down t.zme _ MDT <)% MDT
total time MTBF +MDT
>U=10""

A. Walsch, IN2244 WS2013/14

42

The Bernoulli Experiment applied to Reliability

We have a total number of n identical components. For each
component only two states are defined: “functioning” or “has
failed”. Both states have a certain probability assigned.

The Bernoulli experiment gives us the probability of finding k (out
of n) components in a functioning state.

We state:

P(functioning) + P (failed) = 1 ;
P(functioning) = p; P (failed) = q

A. Walsch, IN2244 WS2013/14 43

The Bernoulli Experiment Il

The probability of k functioning components out of n total is

P(n,p,k)=(’;)pkq”k

Now we need the probability that a system function (spread
across k components or sub-functions) is working -> reliability
(“probability of survival”)

P(n’p’k):(Z)Rk(l—R)”k

Is the probability of having k functioning components in an
assembly of n total.

A. Walsch, IN2244 WS2013/14 44

Series Reliability Calculation

_R R R R R—

All n components above need to work such that the series
assembly (system) is functioning.

The probability of having n functioning blocks out of n total is
R.=P(n,n k)=["|R"(1-R)""=R"

when using a Ber?woulli experiment.

R,=R*R*..* R=R"

when using the probability law for independent events.

A. Walsch, IN2244 WS2013/14

45

Parallel Reliability Calculation
- Full active Redundancy -

At least 1 component needs to be

functioning in full active redundancy R
configuration.

R
Therefore, the assembly is working if n or
(n-1) or ... or 1 component work. R

n=2: 2 or 1 component must be functioning.

R=|%|R*(1-R)°+(2|R'(1-R)'=2R—R*=R(2—R)>R
Gro-ad

N=nN.

%)

R :(Z)R”(l—R)O+...+(’f)R1(1—R)”1:1—(1—R)”

A. Walsch, IN2244 WS2013/14 46

Parallel Reliability Calculation
- Partial active Redundancy -

At least m components need to be
functioning in partial active redundancy

. ; R

configuration.
Therefore, the assembly is working if n or R
(n-1) or ... or m components work. :
R

n=3. m = 2 (2003, spoken “two out of three”)

RS:(:;)R3(1 —R)O+(;)Rl(l —R)'=3R2-2R’

n=N, m = M: (MooN, spoken “M out of N”)

RS:(Z)R”(l—R)O+---+(:;)Rm(l—R)”m

A. Walsch, IN2244 WS2013/14 47

Replication and Diversity
- Avoidance of Common Cause Faults -

Replication:

identical copy of the original function R1
(identical in specification for all phases

of development and in implementation) R2
Diversity: -
different copy of the original function R3

(differences in specification and
implementation — same interface to caller, same functional
semantics — different behavioral semantics)

From DO-178B (multiple dissimilar software, n-version
programming): different programming languages, different
compilers, dissimilar processor, different teams, different linkers
and loaders, different design standards)

A. Walsch, IN2244 WS2013/14 48

Partial Active Redundancy Example
- 2003 Majority Voter -

R
R % » ,correct” output

R

Three inputs, one output: Triple Modular Redundancy (TMR)
Input stages have reliability R, Voter and output stage have
reliability R

One unit may fail but no more (partial redundancy)
Reliability: R,=3R’-2R’=R(3R—-2R’*)>R?

Adjudication method: majority, median, consensus

A. Walsch, IN2244 WS2013/14 49

Partial Active Redundancy Example
- 2003 Majority Voter -

Cﬂﬂﬁgu‘d:laﬂ

l‘
Information Metwark (PDH) - Ethernet Historion
(PDH) - I o [e it

Fonitoring

Operator & Engineer Stations (HMIs)

CRCHCE . B

Control Metwork (UDH) - Ethemet

|:I [I I:I Conirallers I:l |:I [I Controllers
L3 L3 L switches 3 L L switches
IONet 100ME Ethernet IOt 100ME Ethernet
npoooon oo tu D00
Process /0 | Process O Turbine /O Dmen-l.oadm
Process V'O Remate UO
Process Control Rotating Machinery Control
Source:
GE Energy

A. Walsch, IN2244 WS2013/14

Complex Configurations

A. Walsch, IN2244 WS 2012/13

51

Complex Configurations

A. Walsch, IN2244 WS 2012/13

52

Complex Configurations

A. Walsch, IN2244 WS 2012/13

53

Complex Configuration Example

R2

—1 R2

Calculate the MTBF of this system (S) made of identical
components (R1=R2=R3=R). A=const.

R=R(2R—R*)=2¢ "' ="
@27 e M —e M dt=...= 2
0

T3

A. Walsch, IN2244 WS2013/14

54

Software Considerations

R2

—1 R2

Definition:
Probability of failure-free software operation for a specified period of time
In a specified environment (from ,Standard Glossary of Software
Engineering Terminology" STD-729-1991, ANSI/IEEE 1991)

Four Methods:

« Fault Prevention: avoid by construction (development: left wing of V-
model)

« Fault Removal: detect by verification and validation (development:
right wing of V-model)

« Fault Tolerance: provide service despite fault (operation)

« Fault Forecasting: estimate faults/failures by evaluation (future)

A. Walsch, IN2244 WS2013/14 55

Embedded System Development

Main Drivers:
Cost, Function, Performance, Dependability (trustworthiness)

— AVAILABILITY

— RELIABILITY

| SAFETY

__ CONFIDENTIALITY
. INTEGRITY

L_ MAINTAINABILITY

— ATTRIBUTES —f

FAULT PREVENTION

DEPENDABILITY —J— MEANS B Eiﬁt} $§£ﬂcg

— FAULT FORECASTING

— FAULTS
. — IMPAIRMENTS —t— ERRORS
Source: — FAILURES

Handbook of Software Reliability Engineering
IEEE 1996, Michael R.Lyu 5 \yalsch, IN2244 WS2013/14

Backup

A. Walsch, IN 2244 WS2013/14

57

Feasibility Study

Feasibility Study

A feasibility study decides whether or not the proposed system
or component is worthwhile. Usually a study on the most risky
elements of a new development.

A short focused study (simulation or setup) that checks

If the proposed system can be engineered using current technology and
within budget (technical and economic feasibility);

If the proposed system can be integrated with other systems that are used
(interoperability).

If the proposed system can meet the requirements (especially non-
functional like reliability, e.g.)

A. Walsch, IN2244 WS2013/14 58

Reliability in Product Descriptions

Source:
Rosemount

Maximize Efficiency.
Improve Quality. Reduce Costs.
Enhance Safety.

Better measurement means a strofger
bottom lime. Resemount 3057 Pressure
Transmitters defiver proven refabiity.
performance and unparallefed safety to
imndrease your plant profitability. with over
3.5 million instailations, the Rosemourt
2057 is mora than field proven— it is the
industry standard.

Simce introduction, you have experienced a
seamess evolution of Coplanar™ platform
enhancements. Our investment legocy
gives you the means te echieve the
business results you demand — without
therisk of changing platferms. Rosemount
2051 Pressure Transmitters are your
pothway to better meoasurement.

What is Rosemount marketing advertising with in this example?

A. Walsch, IN2244 WS2013/14 59

Functional Requirements

Functional Requirement
Core system function used to fulfill the system purpose — we ask
what must the system do?

Inputs and associated outputs (valid inputs, invalid inputs,
warnings, errors)

Formats for 1/O
User Interfaces and different roles (technician, customer, ...)
States of the system (operational, error)

Failure modes

A. Walsch, IN2244 WS2013/14

60

Functional Requirements Capture

Look at system as black-box

Look at what it interacts with
Other systems, devices, users (identified as user-roles)
UML: use case diagram

Look at how it interacts
Data flow, control
UML: sequence diagram

Traditional, basic form: textual, according to some template or
standard form (text document, unique ID)

Model-based form: use case and sequence diagrams (UML) +
textual description

A. Walsch, IN2244 WS2013/14 61

Functional Requirements
- Textual Examples -

“The system shall connect to a pressure sensor with 4 — 20 mA
interface.”
“The system shall not supply power to the pressure sensor.”

“The system shall indicate a violation of input range by an “out of
range” error message according to [std. xyz.] if the current input is
less than 5 mA or more than 19 mA.”

“All pressure readings shall be communicated via the CAN bus.”

“All pressure readings shall be communicated according to [std.
Xyz]”

A. Walsch, IN2244 WS2013/14 62

Functional Requirements
- Model Driven Development (MDD) Example -

@ Measure @
Pressure Can Bus

Pressure

Sensor/

@ Configure @

Temperature Q ici
mperal Technician

lﬂ] Signal Health

: _
Request health | request I
information L e
Acknowledge health u information
information I .

" Functional View

= Actors = external users or devices
® Use cases = functions

A. Walsch, IN2244 WS2013/14 63

MDD Example Il

i— b

Pressure /
Sensor Can Bus
Init
Operate
Temperature Technician
Sensor
/

\@ Halt
User

A. Walsch, IN2244 WS2013/14

	Industrial Embedded Systems - Design for Harsh Environment -
	Motivation
	Motivation II
	The Big Picture
	Requirements Analysis
	Challenges in Requirements Analysis
	A final Look at Requirements
	Traceability
	Requirements Specification Structure
	The Big Picture II
	Non-Functional Requirements
	Non-Functional Requirements Capture
	Non-Functional Requirements - Textual Examples -
	Folie 14
	Folie 15
	Folie 16
	Fault, Error, Failure
	Fault, Error, Failure II
	Quantitative Failure Example
	Failure Modes and Effect Analysis (FMEA)
	FMEA II
	FMEA III
	Folie 23
	Folie 24
	Folie 25
	Fault Tree Analysis (FTA)
	FTA II
	Folie 28
	Where are we?
	Failure Rate
	Systematic Failures - software -
	Reliability
	Mean Time Between Failure (MTBF)
	Folie 34
	Relation between Reliability and MTBF
	Failure Rate Example
	Failure Rate Example II
	Folie 38
	Mean Down Time (MDT)
	Availability
	Unavailability Example
	Unavailability Example
	The Bernoulli Experiment applied to Reliability
	The Bernoulli Experiment II
	Series Reliability Calculation
	Parallel Reliability Calculation - full active redundancy -
	Parallel Reliability Calculation - partial active redundancy -
	Folie 48
	Partial Active Redundancy Example - 2oo3 majority voter -
	Partial Active Redundancy Example - 2oo3 majority voter -
	Complex Configurations
	Folie 52
	Folie 53
	Complex Configuration Example
	Folie 55
	Folie 56
	Backup
	Feasibility Study
	Reliability in Product Descriptions
	Functional Requirements
	Functional Requirements Capture
	Functional Requirements - Textual Examples -
	Folie 63
	MDD Example II

