
Industrial Embedded Systems
- Design for Harsh Environment -

Dr. Alexander Walsch
alexander.walsch@ge.com

IN2244

Part II

WS 2013/14

Technische Universität München

mailto:alexander.walsch@ge.com

2A. Walsch, IN2244 WS2013/14
Source: http://www.bowdoin.edu/~disrael/what-the-customer-really-needed/what-the-customer-
really-needed.jpg

Motivation
- What the Customer really needed -

Motivation II

3A. Walsch, IN2244 WS2013/14

 Requirements are features of a system or system function used
to fulfill the system purpose.

Requirements Engineering

Requirements
Validation

Requirements
Specification

Feasability
Study

Requirements
Elicitation and

Analysis

Requirements Engineering II

4A. Walsch, IN2244 WS2013/14

 The requirements elicitation and analysis phase of embedded
system development is about:

 Getting all system functions together

 Showing scope, usage, and constraints (performance, environment,
regulation, threats, etc.) of the proposed system

 Get a good understanding on effort and system architecture (risk
reduction)

 Wrong (e.g. missing, contradicting) information will make us fail
at a very cost intensive level → validation

 Once all information are available and validated the
requirements are translated into a requirements specification
which is a technical document for further development (metrics
and defined format on all requirements)

Requirements Elicitation and Analysis

How do we get all these requirements?

 Involves technical staff working with customers or users to find
out about the application domain (field technicians), the
services that the system should provide and the system’s
operational constraints.

 May involve end-users, our customers, managers, engineers
involved in prior development and/or maintenance, domain
experts, certification bodies, etc. These are called
stakeholders.

 Also non-functional requirements can be discovered in a
systematic way (QFD, FTA, RBD, PHA, ...)

5A. Walsch, IN2244 WS2013/14

Challenges in Requirements Analysis

 Stakeholders don’t know what they really want.

 Stakeholders express requirements in their own terminology –
maybe not precise.

 Different stakeholders may have conflicting requirements.

 Political factors may influence the system requirements (e.g.
disasters).

 The requirements change during the analysis process.

 Some requirements might be common sense and not explicitly
mentioned.

6A. Walsch, IN2244 WS2013/14

Requirements Validation

 Validity
Does the system provide the functions which the customer
expects?

 Consistency
Are there any requirements conflicts?

 Completeness
Are all functions required by the customer included? Are more
functions included?

 Realism
Can the requirements be implemented given available budget
and technology -> feasibility?

 Verifiability
Can the requirements be tested?

7A. Walsch, IN2244 WS2013/14

Traceability

Traceability

Traceability is concerned with the relationships between
requirements, their sources and their design implications.
Traceability can be a requirement itself.

 Source traceability
 Links from requirements to stakeholders who proposed these

requirements

 Requirements traceability
 Links between dependent requirements

 Design traceability
 Links from the requirements to the design

8A. Walsch, IN2244 WS2013/14

Requirements Specification Structure

Typical document layout:

Requirement Specification
1. Objective
2. System Description (boundary, interfaces, major

components)
3. Functional Requirements
4. Non-functional Requirements
5. Mechanical Constraints
6. Environmental Constraints
7. RAMS (safety in a separate document)

All requirements get numbers which allow forward and
backwards tracing.

9A. Walsch, IN2244 WS2013/14

Non-functional Requirements

10A. Walsch, IN2244 WS2013/14

 There are basically two kinds of requirements:

 Non-functional (quality)

 Functional (operations – IO)

 We will look into tools that help to gather requirements for
 Safety: hazard analysis, fault trees (FTA), risk assessment (quality)

 Reliability: (failure mode and effect) FMEA, FTA

 There are more non-functional requirements which will not be
covered.

Non-Functional Requirements

Non-Functional Requirement
Constraints on implementation – How should the system be?

Includes

 Global constraints that influence system as a whole (shock,
vibration, temperature, cost…)

 Function performance (response time, repeatability, utilization,
accuracy)

 The “-ilities” (reliability, availability, safety, security,
maintainability, testability, …)

 Other quality (ease of configuration and installation, …)

11A. Walsch, IN2244 WS2013/14

Non-Functional Requirements Capture

12A. Walsch, IN2244 WS2013/14

Look at system as black-box and concentrate on a specific use
case

 Look at real-time aspects
response time, sampling rate

 Data quality
accuracy, precision

 Refine functional requirements – make more specific and
testable

 Look at comparable systems (prior art, competitors)

 Safety (new laws or regulation) and reliability

 Hardware constraints (memory, CPU, IO)

Non-Functional Requirements
- Textual Examples -

13A. Walsch, IN2244 WS2013/14

“Pressure samples shall be taken every 1s.”
“The response time for pressure measurement shall be less than
10ms.”
“Reliability: 1000 FIT”
“The measurement shall have an accuracy of 2%.”
“The measurement shall be repeatable with a precision not less
than 0.5%.”
“The system shall meet the safety criteria according to [std.].”

Source:
wikipedia

Quality Function Deployment (QFD)

14A. Walsch, IN2244 WS2013/14

 QFD is a systematic way to correlate the relationship between
customer requirements and technical requirements.

 QFD is based on a sequence of matrix charts.

 QFD has been introduced for quality planning in
manufacturing (Akao 1960s) but is a general methodology that
can also be applied to computer system design.

Source: Borge, A
functional approach to
QFD

QFD for Software

15A. Walsch, IN2244 WS2013/14

 QFD needs to be adjusted to reflect embedded software
development.

 Customer requirements – requirements as received from
customer

 Design requirements → Software technical requirements
(functions)

 Part requirements → Architectural requirements (coarse
design, larger entities, look at cohesion and coupling)

 Manufacturing requirements → Detailed Design (functions,
classes, algorithm, data)

 Production requirements → Implementation (coding details,
code quality)

QFD Example
- See Whiteboard -

16A. Walsch, IN2244 WS2013/14

Source: Borge, A
functional approach to
QFD

 Development of a smart meter

 Customer requirements:

– Inexpensive

– Secure and reliable

– Measures voltage and current

– Wireless comms

– Powerline comms

– Display

coupling

priority

Fault, Error, Failure

Fault (HW), Defect, Bug (SW)
abnormal condition that may cause a reduction in, or loss of, the
capability of a functional unit to perform a required function

Error (revealed fault)
a deviation from the correct value or state

Failure
Failure is defined as deviation from the specification. The
designed function can not be executed anymore as specified.

Failure Mode
A function can fail in various ways. In our analysis we pick the
failure mode that leads to the failure we investigate.

17A. Walsch, IN2244 WS2013/14

Fault, Error, Failure II

18A. Walsch, IN2244 WS2013/14

Fault Error Failure

Safety issue

Reliability
Issue

 Hardware faults can be random or systematic. Software defects
are systematic
 Hardware faults can be thought of as physical faults, e.g. a bit
flips, a wire breaks. Software defects are mistakes during
development
 Faults and defects are dormant until the resource is used (think
of a software task that executes specific code for the first time)
 Once it is used it may cause an error which is a deviation from
the expected
 The error may make the system deviate from its specification. It
is running outside its intended use

Failure Modes

Function:
A process variable is measured (input) and the temperature
compensated reading transmitted using a 4 – 20 mA data
communication interface (output).

The following failure modes and occurrences are known. What
failure modes do influence our design most?

19A. Walsch, IN2244 WS2013/14

Failure Mode Failure occurance

4 – 20 mA current signal stuck
fail (output)

Low

4 – 20 mA current signal low
fail (output)

Low

Sensor head fail (input) Medium

Power failure High

Other low

Failure Modes and Effect Analysis (FMEA)

20A. Walsch, IN2244 WS2013/14

 System FMEA in requirements analysis (proposed system)

 Also: Design FMEA (existing system)

 What are the failure modes and what is the effect:

 System failure (e.g. power, communication, timeliness, erroneous) mode
assessment

 Plan how to prevent the failures

 How does it work?

 Identify potential failure modes and rate the severity (team activity)

 Evaluate objectively the probability of occurrence of causes and the ability to
detect the cause when it occurs

 Rank failure modes and isolate the most critical ones

FMEA II

21A. Walsch, IN2244 WS2013/14

 FMEA tools

 Spreadsheet, proprietary (e.g. Reliasoft Xfmea)

 Risk ratings: 1 (best) to 10 (worst)

 Severity (SEV) – how significant is the impact

 Occurance (OCC) – likelihood of occurance

 Detection (DET) – how likely will the current system detect the failure mode

 Risk Priority Number (RPN)

 A numerical calculation of the relative risk of a particular failure mode

 RPN = SEV x OCC x DET

 Used to isolate the most risky functions and their failure modes

 Qualtitative approach (risk ratings are relative numbers)

FMEA II

FMEA III

22A. Walsch, IN2244 WS2013/14

 Function – What is the system going to do?

 Failure – How could the function fail?

 Effect – What could be the outcome of the failure?

 Cause – What could be the cause of the failure?

FMEA III

Function Failure Effect Si Cause Oi Control Control Type Di RPNi

Function 1 Failure mode 1 Effect 1 2 Cause 1 9 Detection 1 Detection 6 108
Failure mode 2 Effect 2 8 Cause 2 2 Detection 2 Detection 6 96
Failure mode 3 Effect 3 1 Cause 3 3 Detection 3 Detection 6 18

Function2 Failure mode 1 Effect 1 6 Cause 1 7 Detection 1 Detection 6 252
Failure mode 2 Effect 2 1 Cause 2 2 Detection 2 Detection 6 12

FMEA III

23A. Walsch, IN2244 WS2013/14

FMEA Example
- See Whiteboard -

 We will take the software technical specification from QFD and
derive possible failures, causes and detection mechanisms.

 The intent here is to specify additional non-functional software
requirements.

 When thinking about software failures consider this:

Source:
Software Safety Hazard
Analysis, J. Lawrence, LBLL

Reliability Block Diagram (RBD)

 We need two things to compare different architectures (in EE):

 A probabilistic model – probability law

 A notation – Reliability Block Diagram (RBD) which assume probabilistic
independent blocks

 Each block has a defined function, a failure mode with a failure rate

 A system function can be spread across different blocks (think of blocks
as components)

24A. Walsch, IN2244 WS2013/14

Source:
Smith: Reliability, Maintainability and Risk

FMEA III

25A. Walsch, IN2244 WS2013/14

RBD Example
- See Whiteboard -

Fault Tree Analysis (FTA)

26A. Walsch, IN2244 WS2013/14

 Top event is failure mode (system or function)

 Devide system functions into sub-functions (functional
decomposition) or system into components (component
decomposition)

 Look into combinations of faults (strength of FTA)

 Tree like structure using combinatorical logic

 Paths of Failure

Outcome:

 Root cause event (external, internal) that (in combination) will lead
to top event → failure modes of sub-functions or components

 Good system understanding – very useful if applied to existing
systems to isolate reliability issues

FTA II

27A. Walsch, IN2244 WS2013/14

Source:
Smith, Functional Safety

 FTA is semantically equivalent to Reliability Block Diagram (RBD)

FTA II

FTA II

28A. Walsch, IN2244 WS2013/14

FTA Example
- See Whiteboard -

Where are we?

A. Walsch, IN 2244 WS2013/14 29

 We know that there are critical requirements that influence our
proposed system

 Criticalilty can be derived from FMEAs and FTAs (there are other
methods as well)

 Criticality can be quantified such that

 Architecturural or technology decisions can be made.

 Concepts are derived from EE hardware engineering. A discipline
more mature than software engineering.

Failure Rate (Hardware)

Failure Rate
A time dependent measure of #failures/time. Commonly only
random failures are considered. The symbol for failure rate is λ(t).
A failure rate is tied to a failure mode. This is a hardware related
metric.

30A. Walsch, IN2244 WS2013/14

Source:
Smith: Reliability, Maintainability and Risk

Failure Rate (Software)

31A. Walsch, IN2244 WS2013/14

 A failure has been defined as deviation from the specification. This
deviation can happen in two ways

 Random (Hardware only) – happen randomly in time. The rate is predictable
(statistical quantification). Previous slide.

 Systematic (Hardware and Software) – linked to a certain cause (fault,
defect, bug) which is present at time of commissioning
They are not predictable. A rigorous design and qualification process must
be applied.

 On change (e.g. software update the error rate may increase)

Source:
Smith: Reliability, Maintainability
and Risk

Reliability

Reliability
Reliability of a system or component is defined to be the
probability that a given system or component will perform a
required function under specified conditions for a specified period
of time.

 “probability of non-failure (survival) in a given period”

 Reliability of a system function is modeled as:
 if the failure rate is constant.

 λ is often expressed as failures per 106 hours or FIT (failures
per 109 hours).

 If “λt” small then R(t) = 1 - λt

32A. Walsch, IN2244 WS2013/14

R(t)=e−λ t

Mean Time Between Failure (MTBF)

MTBF
Mean Time Between Failures (MTBF) is the average time a
system will run between failures. The MTBF is usually expressed
in hours.

Let us consider N items with k having failed at time t, T being the
cumulative time.

33A. Walsch, IN2244 WS2013/14

N s(t)=N−k ;number surviving at time t

R(t)=
N s(t)

N

T total=∫
0

∞

N s(t)dt

MTBF :Θ=∫
0

∞ N s (t)

N
dt=∫

0

∞

R(t)dt=∫
0

∞

e−λ t dt

Θ=λ
−1 ,λ=const.

MTBF II

The observed MTBF (not all items have failed but k):

 T = total time, k = failed items (total N)

34A. Walsch, IN2244 WS2013/14

Θ̂=
T
k

Relation between Reliability and MTBF

t

Reliability

R(t)
1.0

0

0.8

0.6

0.4

0.2

1 MTBF 2 MTBF

0.36

35A. Walsch, IN2244 WS2013/14

0.14

R(t)=e−λ t=e
−
t
Θ

t=Θ⇒R=e−1
≈0.37

t=2Θ⇒ R=e−2
≈0.14

Failure Rate Example

A system (S) has 10 components. Each component does have a
failure rate of 5 per 106 hours (5000 FIT). Calculate the failure rate
and MTBF of a function. Consider two cases:

- All components are required to perform the function (single point
of failure).

- Each component performs a different function. Calculate the
metrics for any of the functions.

We assume that there is only one failure mode for the component.

36A. Walsch, IN2244 WS2013/14

Failure Rate Example II

A) All components are required to perform the function (single
point of failure)

λ
C
 = 5000 FIT

λ
function

 = 10 * 5000 FIT = 50000 FIT (5 * 10-5 failures/hour)

MTBF = 20000h

B) Each component performs a different function

λ
C
 = λ

function
 = 5000 FIT = 5 * 10-6 failures/hour; MTBF = 200000h

37A. Walsch, IN2244 WS2012/13

MCU Example

38A. Walsch, IN2244 WS2012/13

Mean Down Time (MDT)

MDT
Mean Down Time (MDT) is the average time a system is in a
failed state and can not execute its function.
MTBF can be understood as the mean up time.

MTTR
Mean Time to Repair (MTTR) is overlapping with MDT. Used for
maintenance calculations. It can be visualized as the average time
it takes (a technician) to repair the system such that it is up again.
We will not use MTTR in this lecture anymore.

For software the equivalent would be the time it takes to make a
modification (e.g. bug fix, update) and install the new software
function.

39A. Walsch, IN2244 WS2013/14

Availability

40A. Walsch, IN2244 WS2013/14

Availability

Availability is the probability that a system is functioning at any
time during its scheduled working period (in percent).

Reliability vs. Availability:

Reliability is inherent to a function given its specified conditions
(internal properties). Availability takes failure and repair into
account (internal and external properties).

A=
up time
total time

=
up time

up time+downtime
=

MTBF
MTBF+MDT

Unavailability Example

41A. Walsch, IN2244 WS2013/14

λ = 10-6 failures/hour ; MDT = 10h

Unavailability = ?

Unavailability Example

42A. Walsch, IN2244 WS2013/14

λ = 10-6 failures/hour ; MDT = 10h

Unavailability = ?

U=
downtime
total time

=
MDT

MTBF+MDT
≈λ∗MDT

⇒U=10−5

The Bernoulli Experiment applied to Reliability

We have a total number of n identical components. For each
component only two states are defined: “functioning” or “has
failed”. Both states have a certain probability assigned.
The Bernoulli experiment gives us the probability of finding k (out
of n) components in a functioning state.

We state:

P(functioning) + P (failed) = 1 ;
P(functioning) = p; P (failed) = q

43A. Walsch, IN2244 WS2013/14

The Bernoulli Experiment II

The probability of k functioning components out of n total is

Now we need the probability that a system function (spread
across k components or sub-functions) is working -> reliability
(“probability of survival”)

is the probability of having k functioning components in an
assembly of n total.

44A. Walsch, IN2244 WS2013/14

P (n , p , k)=(nk) p
k qn−k

P (n , p , k)=(nk)R
k
(1−R)

n−k

Series Reliability Calculation

45A. Walsch, IN2244 WS2013/14

R R R R R

All n components above need to work such that the series
assembly (system) is functioning.

The probability of having n functioning blocks out of n total is

when using a Bernoulli experiment.

when using the probability law for independent events.

RS=P (n ,n , k)=(nn)R
n
(1−R)

n−n
=Rn

RS=R∗R∗...∗R=Rn

Parallel Reliability Calculation
- Full active Redundancy -

46A. Walsch, IN2244 WS2013/14

At least 1 component needs to be
functioning in full active redundancy
configuration.

Therefore, the assembly is working if n or
(n-1) or ... or 1 component work.

R

R

R

n=2: 2 or 1 component must be functioning.

 n=n:

RS=(2
2)R

2
(1−R)

0
+(2

1)R
1
(1−R)

1
=2R−R2

=R(2−R)>R

RS=(nn)R
n
(1−R)

0
+...+(n1)R

1
(1−R)

n−1
=1−(1−R)

n

Parallel Reliability Calculation
- Partial active Redundancy -

47A. Walsch, IN2244 WS2013/14

At least m components need to be
functioning in partial active redundancy
configuration.

Therefore, the assembly is working if n or
(n-1) or ... or m components work.

R

R

R
n=3: m = 2 (2oo3, spoken “two out of three”)

n=N, m = M: (MooN, spoken “M out of N”)

RS=(3
3)R

3
(1−R)

0
+(3

2)R
1
(1−R)

1
=3R2

−2R3

RS=(nn)R
n(1−R)0+...+(nm)R

m(1−R)n−m

Replication and Diversity
- Avoidance of Common Cause Faults -

48A. Walsch, IN2244 WS2013/14

R1

R2

R3

 Replication:
identical copy of the original function
(identical in specification for all phases
of development and in implementation)

 Diversity:
different copy of the original function
(differences in specification and
implementation – same interface to caller, same functional
semantics – different behavioral semantics)

 From DO-178B (multiple dissimilar software, n-version
programming): different programming languages, different
compilers, dissimilar processor, different teams, different linkers
and loaders, different design standards)

Partial Active Redundancy Example
- 2oo3 Majority Voter -

R

R

R

R
V

 Three inputs, one output: Triple Modular Redundancy (TMR)
 Input stages have reliability R, Voter and output stage have

reliability R
V

 One unit may fail but no more (partial redundancy)
 Reliability:
 Adjudication method: majority, median, consensus

49A. Walsch, IN2244 WS2013/14

RS=3R2
−2R3

=R(3R−2R2
)>R?

„correct“ output

Partial Active Redundancy Example
- 2oo3 Majority Voter -

50A. Walsch, IN2244 WS2013/14

Source:
GE Energy

Complex Configurations

R R R

R

R

R

51A. Walsch, IN2244 WS 2012/13

Complex Configurations

R R R

R

R

R

52A. Walsch, IN2244 WS 2012/13

R

R

R

R̃

Complex Configurations

R R R

R

R

R

53A. Walsch, IN2244 WS 2012/13

R

R

R

R̃ R̃ R̂

Complex Configuration Example

R1

R2

R2

54A. Walsch, IN2244 WS2013/14

Calculate the MTBF of this system (S) made of identical
components (R1=R2=R3=R). λ=const.

RS=R (2R−R2
)=2e−2λ t

−e−3λ t

Θ=∫
0

∞

2e−2λ t
−e−3λ t dt=...=

2
3λ

Software Considerations

R1

R2

R2

55A. Walsch, IN2244 WS2013/14

Definition:
Probability of failure-free software operation for a specified period of time
in a specified environment (from „Standard Glossary of Software
Engineering Terminology" STD-729-1991, ANSI/IEEE 1991)

Four Methods:
● Fault Prevention: avoid by construction (development: left wing of V-

model)
● Fault Removal: detect by verification and validation (development:

right wing of V-model)
● Fault Tolerance: provide service despite fault (operation)
● Fault Forecasting: estimate faults/failures by evaluation (future)

Embedded System Development

Main Drivers:
Cost, Function, Performance, Dependability (trustworthiness)

Source:
Handbook of Software Reliability Engineering
IEEE 1996, Michael R. Lyu A. Walsch, IN2244 WS2013/14 56

Backup

A. Walsch, IN 2244 WS2013/14 57

Feasibility Study

Feasibility Study

A feasibility study decides whether or not the proposed system
or component is worthwhile. Usually a study on the most risky
elements of a new development.

A short focused study (simulation or setup) that checks

 If the proposed system can be engineered using current technology and
within budget (technical and economic feasibility);

 If the proposed system can be integrated with other systems that are used
(interoperability).

 If the proposed system can meet the requirements (especially non-
functional like reliability, e.g.)

58A. Walsch, IN2244 WS2013/14

Reliability in Product Descriptions

59A. Walsch, IN2244 WS2013/14

Source:
Rosemount

What is Rosemount marketing advertising with in this example?

Functional Requirements

Functional Requirement
Core system function used to fulfill the system purpose – we ask
what must the system do?

 Inputs and associated outputs (valid inputs, invalid inputs,
warnings, errors)

 Formats for I/O

 User Interfaces and different roles (technician, customer, …)

 States of the system (operational, error)

 Failure modes

60A. Walsch, IN2244 WS2013/14

Functional Requirements Capture

Look at system as black-box

 Look at what it interacts with
Other systems, devices, users (identified as user-roles)
UML: use case diagram

 Look at how it interacts
Data flow, control
UML: sequence diagram

 Traditional, basic form: textual, according to some template or
standard form (text document, unique ID)

 Model-based form: use case and sequence diagrams (UML) +
textual description

61A. Walsch, IN2244 WS2013/14

Functional Requirements
- Textual Examples -

“The system shall connect to a pressure sensor with 4 – 20 mA
interface.”

“The system shall not supply power to the pressure sensor.”

“The system shall indicate a violation of input range by an “out of
range” error message according to [std. xyz.] if the current input is
less than 5 mA or more than 19 mA.”

“All pressure readings shall be communicated via the CAN bus.”

“All pressure readings shall be communicated according to [std.
xyz]”

62A. Walsch, IN2244 WS2013/14

Functional Requirements
- Model Driven Development (MDD) Example -

63A. Walsch, IN2244 WS2013/14

 Functional View
 Actors = external users or devices
 Use cases = functions

Pressure
Sensor

Temperature
Sensor

Can Bus

Technician

User

Measure
Pressure

Configure

Signal Health

:HealthUser

Request health
information

request

Acknowledge health
information

information

MDD Example II

64A. Walsch, IN2244 WS2013/14

«Interface»

Pressure

«Interface»

Temperature

«Interface»

CAN

«Interface»

Config

«Interface»

Health

Control

Can Bus

Pressure
Sensor

Temperature
Sensor

Technician

User

Init

Operate

Halt

/

/

/

	Industrial Embedded Systems - Design for Harsh Environment -
	Motivation
	Motivation II
	The Big Picture
	Requirements Analysis
	Challenges in Requirements Analysis
	A final Look at Requirements
	Traceability
	Requirements Specification Structure
	The Big Picture II
	Non-Functional Requirements
	Non-Functional Requirements Capture
	Non-Functional Requirements - Textual Examples -
	Folie 14
	Folie 15
	Folie 16
	Fault, Error, Failure
	Fault, Error, Failure II
	Quantitative Failure Example
	Failure Modes and Effect Analysis (FMEA)
	FMEA II
	FMEA III
	Folie 23
	Folie 24
	Folie 25
	Fault Tree Analysis (FTA)
	FTA II
	Folie 28
	Where are we?
	Failure Rate
	Systematic Failures - software -
	Reliability
	Mean Time Between Failure (MTBF)
	Folie 34
	Relation between Reliability and MTBF
	Failure Rate Example
	Failure Rate Example II
	Folie 38
	Mean Down Time (MDT)
	Availability
	Unavailability Example
	Unavailability Example
	The Bernoulli Experiment applied to Reliability
	The Bernoulli Experiment II
	Series Reliability Calculation
	Parallel Reliability Calculation - full active redundancy -
	Parallel Reliability Calculation - partial active redundancy -
	Folie 48
	Partial Active Redundancy Example - 2oo3 majority voter -
	Partial Active Redundancy Example - 2oo3 majority voter -
	Complex Configurations
	Folie 52
	Folie 53
	Complex Configuration Example
	Folie 55
	Folie 56
	Backup
	Feasibility Study
	Reliability in Product Descriptions
	Functional Requirements
	Functional Requirements Capture
	Functional Requirements - Textual Examples -
	Folie 63
	MDD Example II

