
Industrial Embedded Systems
- Design for Harsh Environment -

Dr. Alexander Walsch
alexander.walsch@ge.com

IN 2244
Part V

WS 2013/14
Technische Universität München

mailto:alexander.walsch@ge.com

A. Walsch IN2244 WS2013/14 2

Architecture Patterns

 Recurring Hardware and Software building blocks

 Focus on

 Reliability – see lecture slides on reliability

 Safety – see lecture slides on safety

 Keep in mind: faults can be random or systematic

 Design decisions are based on reasoning (FTA, FMEA) and
recommendations (e.g. safety architectures)

A. Walsch IN2244 WS2013/14 3

Software Design Concepts

Source: IEC61508-3

A. Walsch IN2244 WS2013/14 4

Base Channel

Input Data Processing Output
Data

source
Data
sink

Processing channel

 Reliability (random faults): see previous calculations

 Reliability (systematic faults): highly affected

 Safety: 1oo1 architecture, not used

A. Walsch IN2244 WS2013/14 5

Protected Channel

Input Data Processing Output
Data

source
Data
sink

Processing channel

Data/Control
 Validation

 Still 1oo1.

 Provides some data and control flow checks (self-monitoring)

 Internal watchdog, acceptance tests

 Use: not used in safety-related applications, reliability increase (depends on
application)

A. Walsch IN2244 WS2013/14 6

External Diagnostics (MooND Architectures)

Input Data Processing Output
Data

source
Data
sink

Processing channel

Data/Control
Validation

HW Integrity

Monitoring channel

Monitor
Actuator
monitorInput

Shutdown trigger

A. Walsch IN2244 WS2013/14 7

Watchdog Circuits

 A watchdog timer is a supervisory component which must be
triggered in regular intervals in order to avoid system reset

 Embedded processors usually come with internal watchdog
circuits.

 A failure mode (drift) of the oscillator (account for in FMEA)
makes a second external one with a separate clock source
highly advisable for robust systems.

 Internal watchdogs can be disabled accidentally by software

 Set and reset the watchdog in different parts of the software to
disallow stuck-at watchdog pulse loops

A. Walsch IN2244 WS2013/14 8

Watchdog Circuits II

Source:
Maxim AN1926

A. Walsch IN2244 WS2013/14 9

Watchdog Circuits III

 Standard watchdog

 Windowed watchdog

Source:
Microchip, dsPIC30F

A. Walsch IN2244 WS2013/14 10

Multiple Channels

Input Data Processing Output
Data

source

Data
sink

Processing channel 1

Input Data Processing Output
Data

source

Processing channel 2

switch
Compare

Fault detection
Switch control

A. Walsch IN2244 WS2013/14 11

Operating Systems
(widely used)

OS Vendor Domain certification

VxWorks CERT Windriver Industry, Aviation

Integrity Greehills Industry, Railway, Aviation,
Healthcare

Neutrino Safe QNX Industry

SafeRTOS Wittenstein Industry

PikeOS SYSGO Industry, Aviation,
Automotive, Railway

A. Walsch IN2244 WS2013/14 12

 The need for scheduling (as taken from PMU system
requirements specification):

 Task response time:
also known as execution time is the total time required for the
computer to complete a task (IO, memory access, overhead,
CPU execution time) – a task in general is an instance of a
program that consumes time

 Task cycle time:
time between periodic task calls (start of execution)

Scheduling

A. Walsch IN2244 WS2013/14 13

Super Loop

 The main loop:

 Super loop
 Functions (tasks) to be
 executed in sequence
 Functions run-to-completion
 Single stack

 But:

 Relies on timeliness of executed
functions

 Variation of function response
time will affect timing of all others

A. Walsch IN2244 WS2013/14 14

 Task (C function)
executed within the
timer-driven
interrupt service
routine (ISR)

 Timing accurate

 Single stack

 Two priorities: high
priority foreground
vs. background

Timer Interrupts

fosc = 2 * fcy

 Timer based interrupts:

A. Walsch IN2244 WS2013/14 15

Context Switch

call instruction (taken from microchip.com)

 Context switch

 Switch from one task to another (P1 to P2)

 Store P1 context (stack pointer if it is a multi-stack
implementation, program counter, registers) – if we switch
stacks we need assembly language

 Restore P2 context

 Is there a „natural“ context switch?

 If we work on one stack there is: function and interrupt calls
save context automatically (the compiler does that for us):

A. Walsch IN2244 WS2013/14 16

Calling Conventions

 Interrupts save context in their
handlers stack frame

 dsPIC default: W0-W15

 RCOUNT

 More on demand – save parameter in
case of dsPIC C30 compiler

 In case of the C30 compiler this also
applies for functions called within an
ISR

 We conclude: a timer-driven
interrupt gives us timing accuracy
and saves our context

Source: microchip.com

A. Walsch IN2244 WS2013/14 17

ISRs

 We can use an ISR to realize a light-weight scheduler:

 We can call different functions at different times (round-robin based on elapsed time to
realize different cycle times)

 All tasks are C functions that run to completion

 We can put a background task into the while(1){...} loop in main. E.g. serial
communication

 BUT: does not really work well if we do have different asynchronous sources of interrupt
(e.g. timer and ADC)

 Why do we use our own scheduler at all?

 Cost of commercial OS

 Lack of certificate (if we need to certify we need to show that the OS meets the criteria of
the certification)

 Therefore, a very simple scheduler might be a good alternative

A. Walsch IN2244 WS2013/14 18

Code Example

10ms cycle 20ms cycle

A. Walsch IN2244 WS2013/14 19

Simple Scheduler

Task3

Task2

Task 1
high address

low address

READY PREEMPTED

RUNNING

[external signal]/create task

[highest priority]/run

[task RTC]/

[higher priority task READY
]/context switch

[higher priority task RTC]/resume

 For multiple sources of interrupt we can realize a fixed-priority
single-stack scheduler using plain C (compiler takes care of
context)

 Every task is realized by a non-blocking (does not wait for external
signal) thread of execution

 Once an IRQ is fired it is marked for execution (READY) and is run if no
task of higher priority is currently running

A. Walsch IN2244 WS2013/14 20

Example
 State-machine based task execution (no state for resource

waiting)

 C compiler ISR handling takes over task switching

 Different interrupt sources (timer, ADC, etc) can trigger task
creation (post event and mark task for execution)

 Refer to „Build a super simple tasker“
http://www.state-machine.com/resources/articles.php

http://www.state-machine.com/resources/articles.php

A. Walsch IN2244 WS2013/14 21

Fault Models

 A fault model determines what possible effects of faults on the
behaviour of a system model are considered

 Hardware fault models are established

 Software fault models mainly deal with corruption of data flow or
control flow

 Special attention is on communication (inter-task or via
networks)

A. Walsch IN2244 WS2013/14 22

Fault Detection

 Fault detection is a series of activities that happen at startup,
background (cyclic tests) and specific maintenance cycles

 CPU

 Memory (used one)

 IO

 Program sequence

 Basic method for fault detection evaluation is FMEA/FMEDA
(hardware integrity and functionality)

 Time-critical test is cyclic background test since it checks physical
resource during operation (must align to the process safety time
specified in the systems requirements).

A. Walsch IN2244 WS2013/14 23

Hardware Integrity

 Specific to safety-related systems in industrial domain

 (IEC61508-2) to achieve a higher DC -> influences PFD/PFH and
architectural constraints

 What is a DC (diagnostic coverage)?

 Hardware failures can lead to hazardous system states (not good!) which can result
in harm (very bad!) – but they do not have to necessarily

 DC is the percentage of faults that are detected by checks; λdd= λd x DC/100

 If we can avoid a dangerous system failure by detecting dangerous component
faults (λd) in advance we can transfer λd into λs (if the application system allows for
that).

 DC comes in four categories: no (<60%), low (60% < DC < 90%), medium (90% <
DC < 99%), high (DC > 99%)

A. Walsch IN2244 WS2013/14 24

Hardware Integrity Examples

Source: IEC61508-2, general faults to be detected or analyzed

A. Walsch IN2244 WS2013/14 25

Hardware Integrity Examples

 Invariable memory and variable memory

Source: IEC61508-2

A. Walsch IN2244 WS2013/14 26

Hardware Integrity Examples

Source: IEC61508-2

 IO

 Program sequence

A. Walsch IN2244 WS2013/14 27

 Parameter memory (non volatile)

 EEPROM – byte wise read and write – holds e.g. configuration
parameters, run-time parameters (hour meter, status)

 Program memory (non volatile)

 Flash (NOR)– word wise read, write requires a block erase - holds
executable (XIP – execute in place)

 Data memory (volatile)

 RAM (SRAM) – word wise read and write addressable - holds data and
stack

Memory

A. Walsch IN2244 WS2013/14 28

Fault Detection
- Memory Model-

 Memory matrix organization

 (1-bit … n-bit) – in reality one data
word stored at a specific address

 address decoder, read and write
amplifiers, control signals, data in
and out

 low diagnostic coverage: stuck-at
for data and/or address (constantly
‘0’ or ‘1’)

 medium diagnostic coverage: DC
fault model for data and address
(stuck-at, high-Z, X-talk)

A. Walsch IN2244 WS2013/14 29

Fault Detection
 - Non-variable Memory (program memory) -

 Modified checksum test,
based on XOR and circular
shift operations

 Defined checksum is
compared to the checksum
calculated during operation

 Odd-numbered bit errors
within a column are detected

 Low diagnostic coverage test

A. Walsch IN2244 WS2013/14 30

Fault Detection
 - Non-variable Memory (program memory) II -

 Signature of one word test (CRC), based on Modulo-2
arithmetic

 Memory content is interpreted as a bit stream

 Division by a defined polynomial yields zero, P(X) = 11001 in
this example

 All one bit and multi-bit failures within one word and 99.6% of all
possible bit failures are detected

 Medium diagnostic coverage test

A. Walsch IN2244 WS2013/14 31

Fault Detection
- Non-variable memory (EEPROM) -

 EEPROM content is copied to SRAM and verified during system
initialization -> working copy

 All changes are made to working copy

 Working copy is written to EEPROM before power-down or at
defined slow cycles (wear-out effect!)

 EEPROM test is reduced to a RAM test – we work from RAM
data

A. Walsch IN2244 WS2013/14 32

Fault Detection
- Variable memory (SRAM) -

 Checkerboard test – low
diagnostic coverage

 Cells are checked for correct
content in pairs

 Initialization, upward test,
downward test, inverse
initialization, upward test,
downward test -> 10 * n
complexity (number of load
store operations)

 Pairs are address inverse

A. Walsch IN2244 WS2013/14 33

Fault Detection
- Variable memory (SRAM) II -

 Walking pattern - medium
diagnostic coverage

 Initialization (A), the first cell
is inverted and all remaining
cells are checked for correct
content (B), the first cell is
inverted again (C), the test is
conducted again with inverse
background (D) -> 2*n*n +
6*n complexity (number of
load store operations)

A. Walsch IN2244 WS2013/14 34

Fault Detection
 - Variable memory (Stack) -

 Stack data integrity is
checked by correct program
flow (the stack stores our
task context)

 Stack limits are checked by
signature or addresses
(some controllers provide
hardware support)

 Underlying hardware (SRAM)
is checked by SRAM tests

A. Walsch IN2244 WS2013/14 35

Fault Detection
- Example -

 RAM tests are destructive – therefore we need to safe the original data in advance

bit flip

A. Walsch IN2244 WS2013/14 36

Communication
- Error Detection -

Address
8 bit Data – 128 bit CRC – 16 bit

payload

transmitted data

 We usually use standard protocols to transmit data.
Correctness is guaranteed by by error detection
mechanisms (e.g. parity, CRC)

 Sometimes error detection capability not sufficient

 Hamming distance of n: n-1 bit errors can be detected.

 Residual error: If we do know the Hamming distance and do know
the bit error rate (bit flips are statistically independent) we can
calculate a residual error.

 CRC: an additional peace of data is added to the existing bit stream.
The additional peace of data allows error detection

Source:
Börcsök, HIMA

A. Walsch IN2244 WS2013/14 37

Communication
- CAN -

 CAN: Controller Area Network, ISO 11898 (PHY, DLL)

 Protocol controller available as peripheral of embedded
processors, line driver external (creates differential signals,
adds protection circuits)

 Serial protocol, up to 1 Mbit/s

 Bit-wise arbitration

 Error detection

Source:
Softing

A. Walsch IN2244 WS2013/14 38

Black Channel

Source:
MESCO Engineering,
Forum Funktionale
Sicherheit 2013

A. Walsch IN2244 WS2013/14 39

Proven in use Software
(FAQs – www.iec.ch)

	Industrial Embedded Systems - Design for Harsh Environment -
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Watchdog Circuits
	Watchdog Circuits II
	Watchdog Circuits IV
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Fault Detection V
	Fault Detection
	Fault Detection II
	Fault Detection III
	Fault Detection IV
	Memory
	Fault Detection - Memory -
	Fault Detection - Non-variable Memory (program memory) -
	Slide 30
	Fault Detection - Non-variable memory (EEPROM) -
	Fault Detection - Variable memory (SRAM) -
	Fault Detection - Variable memory (SRAM) II -
	Fault Detection - Variable memory (Stack) -
	Fault Detection - Example -
	Communication - error detection -
	Communication - CAN -
	Slide 38
	Slide 39

