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Architecture Patterns

 Recurring Hardware and Software building blocks

 Focus on

 Reliability – see lecture slides on reliability

 Safety – see lecture slides on safety

 Keep in mind: faults can be random or systematic

 Design decisions are based on reasoning (FTA, FMEA) and 
recommendations (e.g. safety architectures)
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Software Design Concepts

Source: IEC61508-3
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Base Channel

Input Data Processing Output
Data

source
Data
sink

Processing channel

 Reliability (random faults): see previous calculations

 Reliability (systematic faults): highly affected

 Safety: 1oo1 architecture, not used
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Protected Channel 

Input Data Processing Output
Data

source
Data
sink

Processing channel

Data/Control
 Validation

 Still 1oo1.

 Provides some data and control flow checks (self-monitoring)

 Internal watchdog, acceptance tests

 Use: not used in safety-related applications, reliability increase (depends on 
application) 
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External Diagnostics (MooND Architectures)

Input Data Processing Output
Data

source
Data
sink

Processing channel

Data/Control
Validation

HW Integrity

Monitoring channel

Monitor
Actuator
monitorInput

Shutdown trigger
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Watchdog Circuits

 A watchdog timer is a supervisory component which must be 
triggered in regular intervals in order to avoid system reset

 Embedded processors usually come with internal watchdog 
circuits.

 A failure mode (drift) of the oscillator (account for in FMEA) 
makes a second external one with a separate clock source 
highly advisable for robust systems.

 Internal watchdogs can be disabled accidentally by software

 Set and reset the watchdog in different parts of the software to 
disallow stuck-at watchdog pulse loops
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Watchdog Circuits II

Source: 
Maxim AN1926
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Watchdog Circuits III

 Standard watchdog

 Windowed watchdog

Source: 
Microchip, dsPIC30F
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Multiple Channels

Input Data Processing Output
Data

source

Data
sink

Processing channel 1

Input Data Processing Output
Data

source

Processing channel 2

switch
Compare

Fault detection
Switch control
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Operating Systems
(widely used)

OS Vendor Domain certification

VxWorks CERT Windriver Industry, Aviation

Integrity Greehills Industry, Railway, Aviation, 
Healthcare

Neutrino Safe QNX Industry

SafeRTOS Wittenstein Industry

PikeOS SYSGO Industry, Aviation, 
Automotive, Railway
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 The need for scheduling (as taken from PMU system 
requirements specification):

 Task response time:
also known as execution time is the total time required for the 
computer to complete a task (IO, memory access, overhead, 
CPU execution time) – a task in general is an instance of a 
program that consumes time

 Task cycle time:
time between periodic task calls (start of execution)

Scheduling
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Super Loop

 The main loop:

 Super loop
 Functions (tasks) to be 
 executed in sequence
 Functions run-to-completion
 Single stack

 But:

 Relies on timeliness of executed 
functions

 Variation of function response
time will affect timing of all others 
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 Task (C function) 
executed within the 
timer-driven 
interrupt service 
routine (ISR)

 Timing accurate

 Single stack

 Two priorities: high 
priority foreground 
vs. background

Timer Interrupts

fosc = 2 * fcy

 Timer based interrupts:
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Context Switch

call instruction (taken from microchip.com)

 Context switch

 Switch from one task to another (P1 to P2)

 Store P1 context (stack pointer if it is a multi-stack 
implementation, program counter, registers) – if we switch 
stacks we need assembly language

 Restore P2 context

 Is there a „natural“ context switch?

 If we work on one stack there is: function and interrupt calls 
save context automatically (the compiler does that for us): 
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Calling Conventions

 Interrupts save context in their 
handlers stack frame

 dsPIC default: W0-W15

 RCOUNT

 More on demand – save parameter in 
case of dsPIC C30 compiler

 In case of the C30 compiler this also 
applies for functions called within an 
ISR

 We conclude: a timer-driven 
interrupt gives us timing accuracy 
and saves our context

Source: microchip.com
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ISRs

 We can use an ISR to realize a light-weight scheduler:

 We can call different functions at different times (round-robin based on elapsed time to 
realize different cycle times)

 All tasks are C functions that run to completion

 We can put a background task into the while(1){...} loop in main. E.g. serial 
communication

 BUT: does not really work well if we do have different asynchronous sources of interrupt 
(e.g. timer and ADC)

 Why do we use our own scheduler at all?

 Cost of commercial OS

 Lack of certificate (if we need to certify we need to show that the OS meets the criteria of 
the certification)

 Therefore, a very simple scheduler might be a good alternative
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Code Example

10ms cycle 20ms cycle
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Simple Scheduler

Task3

Task2

Task 1
high address

low address

READY PREEMPTED

RUNNING

[external signal]/create task

[highest priority]/run

[task RTC]/

[higher priority task READY
]/context switch

[higher priority task RTC]/resume

 For multiple sources of interrupt we can realize a fixed-priority 
single-stack scheduler using plain C (compiler takes care of 
context)

 Every task is realized by a non-blocking (does not wait for external 
signal) thread of execution

 Once an IRQ is fired it is marked for execution (READY) and is run if no 
task of higher priority is currently running
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Example
 State-machine based task execution (no state for resource 

waiting)

 C compiler ISR handling takes over task switching

 Different interrupt sources (timer, ADC, etc) can trigger task 
creation (post event and mark task for execution)

 Refer to „Build a super simple tasker“ 
http://www.state-machine.com/resources/articles.php

http://www.state-machine.com/resources/articles.php
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Fault Models

 A fault model determines what possible effects of faults on the 
behaviour of a system model are considered

 Hardware fault models are established

 Software fault models mainly deal with corruption of data flow or 
control flow

 Special attention is on communication (inter-task or via 
networks)
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Fault Detection

 Fault detection is a series of activities that happen at startup, 
background (cyclic tests) and specific maintenance cycles

 CPU

 Memory (used one)

 IO

 Program sequence

 Basic method for fault detection evaluation is FMEA/FMEDA 
(hardware integrity and functionality)

 Time-critical test is cyclic background test since it checks physical 
resource during operation (must align to the process safety time 
specified in the systems requirements).
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Hardware Integrity

 Specific to safety-related systems in industrial domain

 (IEC61508-2) to achieve a higher DC -> influences PFD/PFH and 
architectural constraints

 What is a DC (diagnostic coverage)?

 Hardware failures can lead to hazardous system states (not good!) which can result 
in harm (very bad!) – but they do not have to necessarily

 DC is the percentage of faults that are detected by checks; λdd= λd x DC/100

 If we can avoid a dangerous system failure by detecting dangerous component 
faults (λd) in advance we can transfer λd into λs (if the application system allows for 
that).

 DC comes in four categories: no (<60%), low (60% < DC < 90%), medium (90% < 
DC < 99%), high (DC > 99%)
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Hardware Integrity Examples

Source: IEC61508-2, general faults to be detected or analyzed
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Hardware Integrity Examples

 Invariable memory and variable memory

Source: IEC61508-2
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Hardware Integrity Examples

Source: IEC61508-2

 IO

 Program sequence
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 Parameter memory (non volatile)

 EEPROM – byte wise read and write – holds e.g. configuration 
parameters, run-time parameters (hour meter, status)

 Program memory (non volatile)

 Flash (NOR)– word wise read, write requires a block erase  - holds 
executable (XIP – execute in place)

 Data memory (volatile)

 RAM (SRAM) – word wise read and write addressable - holds data and 
stack

Memory
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Fault Detection
- Memory Model- 

 Memory matrix organization

 (1-bit … n-bit) – in reality one data 
word stored at a specific address

 address decoder, read and write 
amplifiers,  control signals, data in 
and out

 low diagnostic coverage: stuck-at 
for data and/or address (constantly 
‘0’ or ‘1’)

 medium diagnostic coverage: DC 
fault model for data and address 
(stuck-at, high-Z, X-talk)
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Fault Detection
 - Non-variable Memory (program memory) - 

 Modified checksum test, 
based on XOR and circular 
shift operations

 Defined checksum is 
compared to the checksum 
calculated during operation

 Odd-numbered bit errors 
within a column are detected

 Low diagnostic coverage test
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Fault Detection
 - Non-variable Memory (program memory) II - 

 Signature of one word test (CRC), based on Modulo-2 
arithmetic

 Memory content is interpreted as a bit stream

 Division by a defined polynomial yields zero, P(X) = 11001 in 
this example

 All one bit and multi-bit failures within one word and 99.6% of all 
possible bit failures are detected

 Medium diagnostic coverage test
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Fault Detection
- Non-variable memory (EEPROM) -

 EEPROM content is copied to SRAM and verified during system 
initialization -> working copy

 All changes are made to working copy

 Working copy is written to EEPROM before power-down or at 
defined slow cycles (wear-out effect!)

 EEPROM test is reduced to a RAM test – we work from RAM 
data
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Fault Detection 
- Variable memory (SRAM) -

 Checkerboard test – low 
diagnostic coverage

 Cells are checked for correct 
content in pairs

 Initialization, upward test, 
downward test, inverse 
initialization, upward test, 
downward test -> 10 * n 
complexity (number of load 
store operations)

 Pairs are address inverse
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Fault Detection 
- Variable memory (SRAM) II -

 Walking pattern - medium 
diagnostic coverage

 Initialization (A), the first cell 
is inverted and all remaining 
cells are checked for correct 
content (B), the first cell is 
inverted again (C), the test is 
conducted again with inverse 
background (D) -> 2*n*n + 
6*n complexity (number of 
load store operations)
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Fault Detection
 - Variable memory (Stack) -

 Stack data integrity is 
checked by correct program 
flow (the stack stores our 
task context)

 Stack limits are checked by 
signature or addresses 
(some controllers provide 
hardware support)

 Underlying hardware (SRAM) 
is checked by SRAM tests
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Fault Detection
- Example -

 RAM tests are destructive – therefore we need to safe the original data in advance

bit flip
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Communication
- Error Detection - 

Address
8 bit Data – 128 bit CRC – 16 bit

payload

transmitted data

 We usually use standard protocols to transmit data. 
Correctness is guaranteed by by error detection 
mechanisms (e.g. parity, CRC)

 Sometimes error detection capability not sufficient

 Hamming distance of n: n-1 bit errors can be detected.

 Residual error: If we do know the Hamming distance and do know 
the bit error rate (bit flips are statistically independent) we can 
calculate a residual error.

 CRC: an additional peace of data is added to the existing bit stream. 
The additional peace of data allows error detection

Source: 
Börcsök, HIMA
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Communication
- CAN -

 CAN: Controller Area Network, ISO 11898 (PHY, DLL)

 Protocol controller available as peripheral of embedded 
processors, line driver external (creates differential signals, 
adds protection circuits)

 Serial protocol, up to 1 Mbit/s

 Bit-wise arbitration

 Error detection

Source: 
Softing
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Black Channel

Source: 
MESCO Engineering, 
Forum Funktionale 
Sicherheit 2013
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Proven in use Software
(FAQs – www.iec.ch)
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