
Kai Huang

Embedded Software

 CSE 2014 On-Going

1/15/2014 Kai.Huang@tum 2

 Global Embedded Software Market To Grow At
A CAGR Of 10.7 Percent Over The Period 2012-
2016

• Embedded Software Market - 2013 Report

1/15/2014 Kai.Huang@tum 3

http://www.researchandmarkets.com/research/2x3m7b/global_embedded

 According to the report, main driver being the increased demand for embedded
software is in the Automotive segment. Embedded software is used in the
development of in-vehicle infotainment systems, in-car navigation, and telematics.
It provides users with additional entertainment and communication features that
are now major requirements for vehicle buyers. One major challenge confronting
the market is the safety and security issues associated with the use of embedded
software. There are higher chances of the embedded software to malfunction as
opposed to application software.

 Embedded Operating System

 Resource Access Protocols

1/15/2014 Kai.Huang@tum 4

Outline

 Why not just bare-metal
o Same reasons why we need one for a traditional computer.

o Not all services are needed for any device.

 Large variety of requirements and environments:
o Critical applications with high functionality (medical

applications, space shuttle, ...).

o Critical applications with small functionality (ABS, pace
maker, ...)

 Not very critical applications with varying functionality
(PDA, phone, smart card, microwave, oven, ...)

1/15/2014 Kai.Huang@tum 5

Why an OS at all?

 Monolithic kernel is too feature reach.

 Monolithic kernel is not modular, fault-
tolerant, configurable, modifiable,

 Takes too much space.

 Not power optimized.

 Not designed for mission-critical applications.

1/15/2014 Kai.Huang@tum 6

Why is a Desktop OS not Suited?

1/15/2014 Kai.Huang@tum 7

Operating System Architecture

From wikipedia

 No single RTOS will fit all needs, no overhead
for unused functions/data tolerated,
configurability needed.

o Simplest form: remove unused functions (by linker
for example).

o Conditional compilation (using #if and #ifdef
commands).

o Static data might be replaced by dynamic data
(but then real-time behavior is in danger).

1/15/2014 Kai.Huang@tum 8

Embedded OS - Configurability

1/15/2014 Kai.Huang@tum 9

Example: Configuration of VxWorks

h
tt

p
:/

/w
w

w
.w

in
d

ri
ve

r.
co

m
/p

ro
d

u
ct

s/
p

ro
d

u
ct

-n
o

te
s/

P
N

_W
o

rk
b

en
ch

_
0

6
1

1
.p

d
f

 Device drivers handled by tasks instead of
integrated drivers:

o Improve predictability; everything goes through
scheduler

o Effectively no device that needs to be supported by all
versions of the OS, except maybe the system timer.

1/15/2014 Kai.Huang@tum 10

Embedded OS - Device Driver

Embedded OS Standard OS

kernel

 Interrupts can be employed by any process
o For standard OS: would be serious source of

unreliability.
o Embedded programs can be considered to be tested

... .
o It is possible to let interrupts directly start or stop

tasks (by storing the tasks start address in the
interrupt table). More efficient and predictable than
going through OS services.

o However, composability suffers: if a specific task is
connected to some interrupt, it may be difficult to add
another task which also needs to be started by the
same event.

1/15/2014 Kai.Huang@tum 11

Embedded OS - Interrupt

 Definition: A real-time operating system is an operating system that
supports the construction of real-time systems.

 Three key requirements:
 1. The timing behavior of the OS must be predictable.

o Every services of the OS: Upper bound on the execution time!
o RTOSs must be deterministic:

• unlike standard Java,
• upper bound on times during which interrupts are disabled,
• almost all activities are controlled by scheduler.

 2. OS must manage the timing and scheduling
o OS possibly has to be aware of task deadlines; (unless scheduling is

done off-line).
o OS must provide precise time services with high resolution.

 3. The OS must be fast
o Practically important.

 1/15/2014 Kai.Huang@tum 12

Real-Time OS

1/15/2014 Kai.Huang@tum 13

Process Management Services

 Process management:
o Execution of quasi-parallel tasks on a processor using

processes or threads (lightweight process) by
• maintaining process states, process queuing,
• preemptive tasks (fast context switching) and quick interrupt

handling

o CPU scheduling (guaranteeing deadlines, minimizing
process waiting times, fairness in granting resources
such as computing power)

o Process synchronization (critical sections,
semaphores, monitors, mutual exclusion)

o Inter-process communication (buffering)
o Support of a real-time clock as an internal time

reference

1/15/2014 Kai.Huang@tum 14

Main Functionality of RTOS-Kernels

1/15/2014 Kai.Huang@tum 15

Context Switching

PCB: Process Control Block

 Minimal Set of Process States:

1/15/2014 Kai.Huang@tum 16

Process States

 Run:
o A task enters this state as it starts
 executing on the processor

 Ready:
o State of those tasks that are ready to execute but cannot

be executed because the processor is assigned to another
task.

 Wait:
o A task enters this state when it executes a synchronization

primitive to wait for an event, e.g., a wait primitive on a
semaphore. In this case, the task is inserted in a queue
associated with the semaphore. The task at the head is
resumed when the semaphore is unlocked by a signal
primitive. (Idle state can be a substate of wait)

 1/15/2014 Kai.Huang@tum 17

Process states

 A thread is an execution stream within the context of a
thread state; e.g., a thread is a basic unit of CPU utilization.

 The key difference between processes and threads:
multiple threads share parts of their state.
o Typically shared: memory.
o Typically owned: registers, stack.

 Thread advantages and characteristics
o Faster to switch between threads; switching between user-level

threads requires no major intervention by operating system.
o Typically, an application will have a separate thread for each

distinct activity.
o Thread Control Block (TCB) stores information needed to

manage and schedule a thread
• E.g., pointer to the PCB

1/15/2014 Kai.Huang@tum 18

Threads

1/15/2014 Kai.Huang@tum 19

Multiple Threads within a Process

 Process synchronization:
o In classical operating systems, synchronization and

mutual exclusion is performed via semaphores
and monitors.

o In real-time OS, special semaphores and a deep
integration into scheduling is necessary (priority
inheritance protocols,).

 Further responsibilities:
o Initializations of internal data structures (tables,

queues, task description blocks, semaphores, ...)

1/15/2014 Kai.Huang@tum 20

Process Management

 Problem: the use of shared resources for
implementing message passing schemes may
cause priority inversion and blocking.

1/15/2014 Kai.Huang@tum 21

Communication Mechanisms

 Synchronous communication:
o Whenever two tasks want to communicate they

must be synchronized for a message transfer to
take place (rendezvous)

o They have to wait for each other.

o Problem in case of dynamic real-time systems:
Estimating the maximum blocking time for a
process rendezvous.

o In a static real-time environment, the problem can
be solved off-line by transforming all synchronous
interactions into precedence constraints.

1/15/2014 Kai.Huang@tum 22

Communication mechanisms

 Asynchronous communication:
o Tasks do not have to wait for each other
o The sender just deposits its message into a channel and

continues its execution; similarly the receiver can directly access
the message if at least a message has been deposited into the
channel.

o More suited for real-time systems than synchronous comm.
o Mailbox: Shared memory buffer, FIFO-queue, basic operations

are send and receive, usually has fixed capacity.
o Problem: Blocking behavior if channel is full or empty;

alternative approach is provided by cyclical asynchronous
buffers.

1/15/2014 Kai.Huang@tum 23

Communication mechanisms

1/15/2014 Kai.Huang@tum 24

Impact of Buffer Allocation

 Fast proprietary kernels

 For hard real-time systems, these kernels are
questionable, because they are designed to be
fast, rather than to be predictable in every
respect

 Examples include

o QNX, PDOS, VCOS, VTRX32, VxWORKS.

1/15/2014 Kai.Huang@tum 25

Class 1: Fast Proprietary Kernels

 Real-time extensions to standard OS:

o Attempt to exploit comfortable main stream OS.

o RT-kernel running all RT-tasks.

o Standard-OS executed as one task.

1/15/2014 Kai.Huang@tum 26

Class 2: Extensions to Standard OSs

+ Crash of standard-OS does not affect RT-tasks;
- RT-tasks cannot use Standard-OS services;
 less comfortable than expected

1/15/2014 Kai.Huang@tum 27

Example RT Linux

 RT-tasks
cannot use standard OS calls.
Commercially available from
fsmlabs (www.fsmlabs.com)

Hardware

RT-Task RT-Task

RT-Linux
RT-Scheduler

Linux-Kernel

driver

scheduler

Init Bash Mozilla

interrupts

interrupts

interrupts

I/O

 Research systems trying to avoid limitations:
o Include MARS, Spring, MARUTI, Arts, Hartos, DARK,

and Melody
o More latest: FreeRTOS, RTEMS, PikeOS, OKL4, uC/OS-II

…

 Research issues:

o low overhead memory protection,
o temporal protection of computing resources
o RTOSes for on-chip multiprocessors
o quality of service (QoS) control (besides real-time

constraints).

 1/15/2014 Kai.Huang@tum 28

Class 3: Research Systems

 Embedded Operating System

 Resource Access Protocols

1/15/2014 Kai.Huang@tum 29

Outline

 Examples of common resources: data structures, variables,
main memory area, file, set of registers, I/O unit,

 Many shared resources do not allow simultaneous accesses
but require mutual exclusion (exclusive resources). A piece
of code executed under mutual exclusion constraints is
called a critical section.

 Can be guaranteed with
 semaphores S or mutexes

1/15/2014 Kai.Huang@tum 30

Resource Sharing

P(S) checks semaphore to see if resource
is available and if yes, sets S to “used“.
Uninterruptible operations! If no, calling
task has to wait.

V(S): sets S to “unused“ and starts
sleeping task (if any).

V(Sk)

P(Sk)

V(Sk)

P(Sk)

 A task waiting for an exclusive resource is said to
be blocked on that resource. Otherwise, it
proceeds by entering the critical section and
holds the resource. When a task leaves a critical
section, the associated resource becomes free.

 Waiting state caused by resource constraints:

1/15/2014 Kai.Huang@tum 31

Terms

 Each exclusive resource Ri must be protected by a
different semaphore Si and each critical section
operating on a resource must begin with a
wait(Si) primitive and end with a signal(Si)
primitive.

 All tasks blocked on the same resource are kept in
a queue associated with the semaphore. When a
running task executes a wait on a locked
semaphore, it enters a waiting state, until
another tasks executes a signal primitive that
unlocks the semaphore.

1/15/2014 Kai.Huang@tum 32

Terms

 Priority T1 assumed to be > than priority of T2.
 If T2 requests exclusive access first (at t0),

T1 has to wait until T2 releases the resource (at
time t3):

Priority Inversion (1)

For 2 tasks: blocking is bounded by the length of the critical section

1/15/2014 33 Kai.Huang@tum

 Blocking with >2 tasks can exceed the length of any
critical section
o Priority of T1 > priority of T2 > priority of T3.
o T2 preempts T3: T2 can prevent T3 from releasing the

resource.

Priority Inversion (2)

Priority inversion

Can last arbitrarily long

T1 Blocked by T3

1/15/2014 34 Kai.Huang@tum

 Disallow preemption during the execution of all
critical sections. Simple, but creates unnecessary
blocking as unrelated tasks may be blocked.

Solutions

T
1

T
1

blocked

normal execution critical section

T
2

P(S) V(S)

T
3

t

P(S) V(S)

1/15/2014 35 Kai.Huang@tum

 Basic idea: Modify the priority of those tasks that
cause blocking. When a task Ti blocks one or
more higher priority tasks, it temporarily assumes
a higher priority.

 Methods:
o Priority Inheritance Protocol (PIP), for static priorities

o Priority Ceiling Protocol (PCP), for static priorities

o Stack Resource Policy (SRP),
• For static and dynamic priorities

o others ...

1/15/2014 Kai.Huang@tum 36

Resource Access Protocols

 Assumptions:
o n tasks which cooperate through m shared resources; fixed

priorities, all critical sections on a resource begin with a wait(Si)
and end with a signal(Si) operation.

 Basic idea:
o When a task Ti blocks one or more higher priority tasks, it

temporarily assumes (inherits) the highest priority of the
blocked tasks.

 Terms:

o We distinguish a fixed nominal priority Pi and an active priority
pi larger or equal to Pi. Tasks Ti, ..., Tn are ordered with respect
to nominal priority where T1 has highest priority. Tasks do not
suspend themselves.

1/15/2014 Kai.Huang@tum 37

Priority Inheritance Protocol (PIP)

 Tasks are scheduled according to their active priorities. Tasks with
the same priorities are scheduled FCFS.

 When a task Ti tries to enter a critical section and the resource is
blocked by a lower priority task, the task Ti is blocked. Otherwise it
enters the critical section.

 When a task Ti is blocked, it transmits its active priority to the task
Tk that holds the semaphore. Tk resumes and executes the rest of
its critical section with a priority pk= pi (it inherits the priority of the
highest priority of the tasks blocked by it).

 When Tk exits a critical section, it unlocks the semaphore and the
highest priority task blocked on that semaphore is awakened. If no
other tasks are blocked by Tk, then pk is set to Pk , otherwise it is set
to the highest priority of the tasks blocked by Tk.

 Priority inheritance is transitive, i.e., if 1 is blocked by 2 and 2 is
blocked by 3, then 3 inherits the priority of 1 via 2.

PIP: Algorithm

1/15/2014 38 Kai.Huang@tum

 How would priority inheritance affect our example with 3 tasks?

Example

T3 inherits the
priority of T1 and

T3 resumes.

Before:

PIP:

 Direct Blocking: higher-priority task tries to acquire a resource held by a lower-
priority task

 Push-through Blocking: medium-priority task is blocked by a lower-priority. Task
that has inherited a higher priority from a task it directly blocks

1/15/2014 39 Kai.Huang@tum

Nested Critical Sections

normal execution critical section

1/15/2014 40 Kai.Huang@tum

Transitiveness of Priority Inheritance

normal execution critical section

1/15/2014 41 Kai.Huang@tum

 Problem exists also when no priority inheritance is used

Deadlock is Possible

T
1

blocked on b

normal execution critical section

T
2

b t

P(Sb)

a

b

P(Sa)

P(Sb)

V(Sb)

V(Sa)

…
P(Sb)

P(Sa)

V(Sa)

V(Sb)

…
T

1
T

2 P(Sa) P(Sb)

P(Sa)

blocked on a

1/15/2014 42 Kai.Huang@tum

 “But a few days into the mission, not long
after Pathfinder started gathering
meteorological data, the spacecraft began
experiencing total system resets, each
resulting in losses of data. The press reported
these failures in terms such as "software
glitches" and "the computer

 was trying to do too many
 things at once".” …

The MARS Pathfinder problem (1)

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

1/15/2014 43 Kai.Huang@tum

Sojourner (1996)

 “VxWorks provides preemptive priority scheduling of
threads. Tasks on the Pathfinder spacecraft were executed
as threads with priorities that were assigned in the usual
manner reflecting the relative urgency of these tasks.”

 “Pathfinder contained an "information bus", which you can
think of as a shared memory area used for passing
information between different components of the
spacecraft.”

The MARS Pathfinder problem (2)

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

A bus management task ran frequently with high
priority to move certain kinds of data in and out of the
information bus. Access to the bus was synchronized
with mutual exclusion locks (mutexes).”

1/15/2014 44 Kai.Huang@tum

 The meteorological data gathering task ran as an
infrequent, low priority thread, … When
publishing its data, it would acquire a mutex, do
writes to the bus, and release the mutex. ..

 The spacecraft also contained a communications
task that ran with medium priority.”

The MARS Pathfinder problem (3)

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html


High priority: retrieval of data from shared memory
Medium priority: communications task
Low priority: thread collecting meteorological data

1/15/2014 45 Kai.Huang@tum

 “… However, very infrequently it was possible for an interrupt to
occur that caused the (medium priority) communications task to be
scheduled during the short interval while the (high priority)
information bus thread was blocked waiting for the (low priority)
meteorological data thread.

 In this case, the long-running communications task, having higher
priority than the meteorological task, would prevent it from
running, consequently preventing the blocked information bus task
from running.

 After some time had passed, a watchdog timer would go off, notice
that the data bus task had not been executed for some time,
conclude that something had gone drastically wrong, and initiate a
total system reset.”

The MARS Pathfinder problem (4)

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

1/15/2014 46 Kai.Huang@tum

 Priority inheritance also solved the Mars
Pathfinder problem: the VxWorks operating
system used in the pathfinder implements a flag
for the calls to mutex primitives. This flag allows
priority inheritance to be set to “on”. When the
software was shipped, it was set to “off”.

Priority inversion on Mars

The problem on Mars was corrected by
using the debugging facilities of
VxWorks to change the flag to “on”,
while the Pathfinder was already on the
Mars [Jones, 1997].

1/15/2014 47 Kai.Huang@tum

 Possibly large number of tasks with high priority.

 Possible deadlocks.

 Ongoing debate about problems with the
protocol:

Victor Yodaiken: Against Priority Inheritance, Sept. 2004,
http://www.fsmlabs.com/resources/white_papers/priority-inheritance/

 Finds application in ADA: During rendez-vous,
task priority is set to the maximum.

 Protocol for fixed set of tasks: priority ceiling
protocol.

Remarks on PIP

1/15/2014 48 Kai.Huang@tum

 The Priority Inheritance Protocol (PIP)

o does not prevent deadlocks

o can lead to chained blocking

• (Several lower priority tasks can block a higher priority task)

o and has inherent static priorities of tasks

The Priority Ceiling Protocol (PCP)

o avoids multiple blocking

o guarantees that, once a task has entered a critical
section, it cannot be blocked by lower priority tasks
until its completion.

PIPPCP

Source: http://www.ida.liu.se/~unmbo/RTS_CUGS_files/Lecture3.pdf

1/15/2014 49 Kai.Huang@tum

 A task is not allowed to enter a critical section if there
are already locked semaphores which could block it
eventually

 Hence, once a task enters a critical section, it can not
be blocked by lower priority tasks until its completion.

 This is achieved by assigning priority ceiling.

 Each semaphore Sk is assigned a priority ceiling C(Sk).
It is the priority of the highest priority task that can
lock Sk.
This is a static value.

PCP

Source: http://www.ida.liu.se/~unmbo/RTS_CUGS_files/Lecture3.pdf

1/15/2014 50 Kai.Huang@tum

Priority Ceiling: Example

Source: http://www.ida.liu.se/ unmbo/RTS_CUGS_files/Lecture3.pdf

1/15/2014 51 Kai.Huang@tum

 Suppose T is running and wants to lock semaphore Sk.

 T is allowed to lock Sk only if
priority of T > priority ceiling C(S*) of the semaphore
S* where:

o S* is the semaphore with the highest priority ceiling
among all the semaphores which are currently locked by
tasks other than T.

o In this case, T is said to be blocked by the semaphore S*
(and the task currently holding S*)

o When T gets blocked by S * then the priority of T is
transmitted to the task that currently holds S*

PCP

So
u

rc
e:

 h
tt

p
:/

/w
w

w
.id

a.
liu

.s
e/

 ~
u

n
m

b
o

/R
TS

_C
U

G
S_

fi
le

s/
Le

ct
u

re
3

.p
d

f

1/15/2014 52 Kai.Huang@tum

PCP: An Example

So
u

rc
e:

 h
tt

p
:/

/w
w

w
.id

a.
liu

.s
e/

 ~
u

n
m

b
o

/R
TS

_C
U

G
S_

fi
le

s/
Le

ct
u

re
3

.p
d

f

1/15/2014 53 Kai.Huang@tum

PCP: An Example

So
u

rc
e:

 h
tt

p
:/

/w
w

w
.id

a.
liu

.s
e/

 ~
u

n
m

b
o

/R
TS

_C
U

G
S_

fi
le

s/
Le

ct
u

re
3

.p
d

f

1/15/2014 54 Kai.Huang@tum

 When T* leaves a critical section guarded by
S* then it unlocks S* and the highest priority
task, if any, which is blocked by S* is
awakened

 The priority of T* is set to the highest priority
of the task that is blocked by some semaphore
that T* is still holding.
If none, the priority of T* is set to be its
nominal one.

PCP

So
u

rc
e:

 h
tt

p
:/

/w
w

w
.id

a.
liu

.s
e/

 ~
u

n
m

b
o

/R
TS

_C
U

G
S_

fi
le

s/
Le

ct
u

re
3

.p
d

f

1/15/2014 55 Kai.Huang@tum

PCP: Example

So
u

rc
e:

 h
tt

p
:/

/w
w

w
.id

a.
liu

.s
e/

~u

n
m

b
o

/R
TS

_C
U

G
S_

fi
le

s/
Le

ct
u

re
3

.p
d

f

t6 : T3 unlocks S1. It awakens T1. But T3s (inherited) priority is now only P2 while P1>C(S2)
=P2. So T1 preempts T3 and runs to completion.

t7: T3 resumes execution with priority P2

t8 : T3 unlocks S2, goes back to its priority P3. T2 preempts T3, runs to completion

1/15/2014 56 Kai.Huang@tum

PCP: Deadlock-Free Example

Source: Lund University, course EDA 040, http://fileadmin.cs.lth.se/cs/Education/EDA040/lecture/RTP-F6b.pdf

1/15/2014 57 Kai.Huang@tum

 Deadlock free (only changing priorities)

 A given task i is delayed at most once by a
lower priority task

 The delay is a function of the time taken to
execute the critical section

 Certain variants as to when the priority is
changed

PCP: Properties

1/15/2014 58 Kai.Huang@tum

 SRP supports dynamic priority scheduling

 SRP blocks the task at the time it attempts to preempt.

 Preemption level li of task i: decreasing function of
deadline (larger deadline  easier to preempt) (Static)

 Resource ceiling: of a resource is the highest
preemption level from among all tasks that may access
that resource (Static)

 System ceiling: is the highest resource ceiling of all the
resources which are currently blocked (dynamic,
changes with resource accesses)

Extending PCP: Stack Resource Policy (SRP)

Source: http://www.ida.liu.se/~unmbo/RTS_CUGS_files/Lecture3.pdf

1/15/2014 59 Kai.Huang@tum

 A task can preempt another task if

o it has the highest priority

o and its preemption level is higher than the system ceiling

 A task is not allowed to start until the resources
currently available are sufficient to meet the maximum
requirement of every task that could preempt it.

 Why Stack Resource Policy? Tasks cannot be blocked by
tasks with lower li, can resume only when the task
completes. Tasks on the same li can share stack space.
More tasks on the same li  higher stack space saving.

SRP Policy

Source: http://www.ida.liu.se/~unmbo/RTS_CUGS_files/Lecture3.pdf

1/15/2014 60 Kai.Huang@tum

 a

SRP vs. PCP

SRP

PCP

Less preemptions for SRP

Source: http://www.ida.liu.se/
~unmbo/RTS_CUGS_files/ Lecture3.pdf

1/15/2014 61 Kai.Huang@tum

