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Embedded Software 



 CSE 2014 On-Going 
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 Global Embedded Software Market To Grow At 
A CAGR Of 10.7 Percent Over The Period 2012-
2016 

• Embedded Software Market - 2013 Report 
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http://www.researchandmarkets.com/research/2x3m7b/global_embedded 

 According to the report,  main driver being the increased demand for embedded 
software is in the Automotive segment. Embedded software is used in the 
development of in-vehicle infotainment systems, in-car navigation, and telematics. 
It provides users with additional entertainment and communication features that 
are now major requirements for vehicle buyers. One major challenge confronting 
the market is the safety and security issues associated with the use of embedded 
software. There are higher chances of the embedded software to malfunction as 
opposed to application software.  



 Embedded Operating System 

 Resource Access Protocols 
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Outline 



 Why not just bare-metal 
o Same reasons why we need one for a traditional computer. 

o Not all services are needed for any device. 

 

 Large variety of requirements and environments: 
o Critical applications with high functionality (medical 

applications, space shuttle, ...). 

o Critical applications with small functionality (ABS, pace 
maker, ...) 

 Not very critical applications with varying functionality 
(PDA, phone, smart card, microwave, oven, ...) 
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Why an OS at all? 



 Monolithic kernel is too feature reach. 

 Monolithic kernel is not modular, fault-
tolerant, configurable, modifiable, ... . 

 Takes too much space. 

 Not power optimized. 

 Not designed for mission-critical applications. 
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Why is a Desktop OS not Suited? 
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Operating System Architecture 

From wikipedia 



 No single RTOS will fit all needs, no overhead 
for unused functions/data tolerated, 
configurability needed. 

o Simplest form: remove unused functions (by linker 
for example). 

o Conditional compilation (using #if and #ifdef 
commands). 

o Static data might be replaced by dynamic data 
(but then real-time behavior is in danger). 
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Embedded OS - Configurability 
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Example: Configuration of VxWorks 
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 Device drivers handled by tasks instead of 
integrated drivers: 

o Improve predictability; everything goes through 
scheduler 

o Effectively no device that needs to be supported by all 
versions of the OS, except maybe the system timer. 
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Embedded OS - Device Driver 

Embedded OS Standard OS 

kernel 



 Interrupts can be employed by any process 
o For standard OS: would be serious source of 

unreliability. 
o Embedded programs can be considered to be tested 

... . 
o It is possible to let interrupts directly start or stop 

tasks (by storing the tasks start address in the 
interrupt table). More efficient and predictable than 
going through OS services. 

o However, composability suffers: if a specific task is 
connected to some interrupt, it may be difficult to add 
another task which also needs to be started by the 
same event. 
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Embedded OS - Interrupt 



 Definition: A real-time operating system is an operating system that 
supports the construction of real-time systems. 
 

 Three key requirements: 
 1. The timing behavior of the OS must be predictable. 

o Every services of the OS: Upper bound on the execution time! 
o RTOSs must be deterministic: 

• unlike standard Java, 
• upper bound on times during which interrupts are disabled, 
• almost all activities are controlled by scheduler. 

 2. OS must manage the timing and scheduling 
o OS possibly has to be aware of task deadlines; (unless scheduling is 

done off-line). 
o OS must provide precise time services with high resolution. 

 3. The OS must be fast 
o Practically important. 
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Real-Time OS 
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Process Management Services 



 Process management: 
o Execution of quasi-parallel tasks on a processor using 

processes or threads (lightweight process) by 
• maintaining process states, process queuing, 
• preemptive tasks (fast context switching) and quick interrupt 

handling 

o CPU scheduling (guaranteeing deadlines, minimizing 
process waiting times, fairness in granting resources 
such as computing power) 

o Process synchronization (critical sections, 
semaphores, monitors, mutual exclusion) 

o Inter-process communication (buffering) 
o Support of a real-time clock as an internal time 

reference 
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Main Functionality of RTOS-Kernels 
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Context Switching 

PCB: Process Control Block 



 Minimal Set of Process States: 
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Process States 



 Run: 
o A task enters this state as it starts  
 executing on the processor 

 Ready: 
o State of those tasks that are ready to execute but cannot 

be executed because the processor is assigned to another 
task. 

 Wait: 
o A task enters this state when it executes a synchronization 

primitive to wait for an event, e.g., a wait primitive on a 
semaphore. In this case, the task is inserted in a queue 
associated with the semaphore. The task at the head is 
resumed when the semaphore is unlocked by a signal 
primitive. (Idle state can be a substate of wait) 
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Process states 



 A thread is an execution stream within the context of a 
thread state; e.g., a thread is a basic unit of CPU utilization. 

 The key difference between processes and threads: 
multiple threads share parts of their state. 
o Typically shared: memory. 
o Typically owned: registers, stack. 

 Thread advantages and characteristics 
o Faster to switch between threads; switching between user-level 

threads requires no major intervention by operating system. 
o Typically, an application will have a separate thread for each 

distinct activity. 
o Thread Control Block (TCB) stores information needed to 

manage and schedule a thread 
• E.g., pointer to the PCB 
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Threads 
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Multiple Threads within a Process 



 Process synchronization: 
o In classical operating systems, synchronization and 

mutual exclusion is performed via semaphores 
and monitors. 

o In real-time OS, special semaphores and a deep 
integration into scheduling is necessary (priority 
inheritance protocols, ....). 

 

 Further responsibilities: 
o Initializations of internal data structures (tables, 

queues, task description blocks, semaphores, ...) 
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Process Management 



 Problem: the use of shared resources for 
implementing message passing schemes may 
cause priority inversion and blocking. 
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Communication Mechanisms 



 Synchronous communication: 
o Whenever two tasks want to communicate they 

must be synchronized for a message transfer to 
take place (rendezvous) 

o They have to wait for each other. 

o Problem in case of dynamic real-time systems: 
Estimating the maximum blocking time for a 
process rendezvous. 

o In a static real-time environment, the problem can 
be solved off-line by transforming all synchronous 
interactions into precedence constraints. 
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Communication mechanisms 



 Asynchronous communication: 
o Tasks do not have to wait for each other 
o The sender just deposits its message into a channel and 

continues its execution; similarly the receiver can directly access 
the message if at least a message has been deposited into the 
channel. 

o More suited for real-time systems than synchronous comm. 
o Mailbox: Shared memory buffer, FIFO-queue, basic operations 

are send and receive, usually has fixed capacity. 
o Problem: Blocking behavior if channel is full or empty; 

alternative approach is provided by cyclical asynchronous 
buffers. 

 

1/15/2014 Kai.Huang@tum 23 

Communication mechanisms 
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Impact of Buffer Allocation 



 Fast proprietary kernels 

 

 For hard real-time systems, these kernels are 
questionable, because they are designed to be 
fast, rather than to be predictable in every 
respect 

 

 Examples include 

o QNX, PDOS, VCOS, VTRX32, VxWORKS. 
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Class 1: Fast Proprietary Kernels 



 Real-time extensions to standard OS: 

o Attempt to exploit comfortable main stream OS. 

o RT-kernel running all RT-tasks. 

o Standard-OS executed as one task. 
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Class 2: Extensions to Standard OSs 

+ Crash of standard-OS does not affect RT-tasks; 
-  RT-tasks cannot use Standard-OS services; 
   less comfortable than expected  
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Example RT Linux 

 RT-tasks 
cannot use standard OS calls. 
Commercially available from 
fsmlabs (www.fsmlabs.com) 

Hardware 

RT-Task RT-Task 

RT-Linux 
RT-Scheduler 

Linux-Kernel 

driver 

scheduler 

Init Bash Mozilla 

interrupts 

interrupts 

interrupts 

I/O 



 Research systems trying to avoid limitations: 
o Include MARS, Spring, MARUTI, Arts, Hartos, DARK, 

and Melody 
o More latest: FreeRTOS, RTEMS, PikeOS, OKL4, uC/OS-II 

… 

 
 Research issues: 

o low overhead memory protection, 
o temporal protection of computing resources 
o RTOSes for on-chip multiprocessors 
o quality of service (QoS) control (besides real-time 

constraints). 
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Class 3: Research Systems 



 Embedded Operating System 

 Resource Access Protocols  
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Outline 



 Examples of common resources: data structures, variables, 
main memory area, file, set of registers, I/O unit, ... . 

 Many shared resources do not allow simultaneous accesses 
but require mutual exclusion (exclusive resources). A piece 
of code executed under mutual exclusion constraints is 
called a critical section. 

 Can be guaranteed with  
 semaphores S or mutexes 
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Resource Sharing 

P(S) checks semaphore to see if resource 
is available and if yes, sets S to “used“. 
Uninterruptible operations! If no, calling 
task has to wait. 

V(S): sets S to “unused“ and starts 
sleeping task (if any). 

V(Sk) 

P(Sk) 

V(Sk) 

P(Sk) 



 A task waiting for an exclusive resource is said to 
be blocked on that resource. Otherwise, it 
proceeds by entering the critical section and 
holds the resource. When a task leaves a critical 
section, the associated resource becomes free. 

 Waiting state caused by resource constraints: 
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Terms 



 Each exclusive resource Ri must be protected by a 
different semaphore Si and each critical section 
operating on a resource must begin with a 
wait(Si) primitive and end with a signal(Si) 
primitive. 
 

 All tasks blocked on the same resource are kept in 
a queue associated with the semaphore. When a 
running task executes a wait on a locked 
semaphore, it enters a waiting state, until 
another tasks executes a signal primitive that 
unlocks the semaphore. 
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Terms 



 Priority T1 assumed to be > than priority of T2. 
 If T2 requests exclusive access first (at t0), 

T1 has to wait until T2 releases the resource (at 
time t3): 

Priority Inversion (1) 

For 2 tasks: blocking is bounded by the length of the critical section 
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 Blocking with >2 tasks can exceed the length of any 
critical section 
o Priority of T1 > priority of T2 > priority of T3. 
o T2 preempts T3: T2 can prevent T3 from releasing the 

resource. 
 
 

Priority Inversion (2) 

Priority inversion 

Can last arbitrarily long 

T1  Blocked by T3  
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 Disallow preemption during the execution of all 
critical sections. Simple, but creates unnecessary 
blocking as unrelated tasks may be blocked. 

Solutions 

T 
1 

T 
1 

blocked 

normal execution critical section 

T 
2 

P(S) V(S) 

T 
3 

t 

P(S) V(S) 
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 Basic idea: Modify the priority of those tasks that 
cause blocking. When a task Ti blocks one or 
more higher priority tasks, it temporarily assumes 
a higher priority. 

 

 Methods: 
o Priority Inheritance Protocol (PIP), for static priorities 

o Priority Ceiling Protocol (PCP), for static priorities 

o Stack Resource Policy (SRP), 
• For static and dynamic priorities 

o others ... 
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Resource Access Protocols 



 Assumptions: 
o n tasks which cooperate through m shared resources; fixed 

priorities, all critical sections on a resource begin with a wait(Si) 
and end with a signal(Si) operation. 
 

 Basic idea: 
o When a task Ti blocks one or more higher priority tasks, it 

temporarily assumes (inherits) the highest priority of the 
blocked tasks. 

 
 Terms: 

o We distinguish a fixed nominal priority Pi and an active priority 
pi  larger or equal to Pi. Tasks Ti, ..., Tn are ordered with respect 
to nominal priority where T1 has highest priority. Tasks do not 
suspend themselves. 
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Priority Inheritance Protocol (PIP) 



 Tasks are scheduled according to their active priorities. Tasks with 
the same priorities are scheduled FCFS. 

 When a task Ti tries to enter a critical section and the resource is 
blocked by a lower priority task, the task Ti is blocked. Otherwise it 
enters the critical section. 

 When a task Ti is blocked, it transmits its active priority to the task 
Tk that holds the semaphore. Tk resumes and executes the rest of 
its critical section with a priority pk= pi (it inherits the priority of the 
highest priority of the tasks blocked by it). 

 When Tk exits a critical section, it unlocks the semaphore and the 
highest priority task blocked on that semaphore is awakened. If no 
other tasks are blocked by Tk, then pk is set to Pk , otherwise it is set 
to the highest priority of the tasks blocked by Tk. 
 

 Priority inheritance is transitive, i.e., if 1 is blocked by 2 and 2 is 
blocked by 3, then 3 inherits the priority of 1 via 2. 

PIP: Algorithm 
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 How would priority inheritance affect our example with 3 tasks? 

Example 

T3 inherits the 
priority of T1 and 

T3 resumes. 

Before: 

PIP: 

 Direct Blocking: higher-priority task tries to acquire a resource held by a lower-
priority task 

 Push-through Blocking: medium-priority task is blocked by a lower-priority. Task 
that has inherited a higher priority from a task it directly blocks 
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Nested Critical Sections 

normal execution critical section 
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Transitiveness of Priority Inheritance 

normal execution critical section 
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 Problem exists also when no priority inheritance is used 

Deadlock is Possible 

T 
1 

blocked on b 

normal execution critical section 
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… 
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blocked on a 
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 “But a few days into the mission, not long 
after Pathfinder started gathering 
meteorological data, the spacecraft began 
experiencing total system resets, each 
resulting in losses of data. The press reported 
these failures in terms such as "software 
glitches" and "the computer  

 was trying to do too many  
 things at once".” … 

The MARS Pathfinder problem (1) 

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html 
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Sojourner (1996) 



 “VxWorks provides preemptive priority scheduling of 
threads. Tasks on the Pathfinder spacecraft were executed 
as threads with priorities that were assigned in the usual 
manner reflecting the relative urgency of these tasks.” 

 “Pathfinder contained an "information bus", which you can 
think of as a shared memory area used for passing 
information between different components of the 
spacecraft.” 

The MARS Pathfinder problem (2) 

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html 

A bus management task ran frequently with high 
priority to move certain kinds of data in and out of the 
information bus. Access to the bus was synchronized 
with mutual exclusion locks (mutexes).”  
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 The meteorological data gathering task ran as an 
infrequent, low priority thread, … When 
publishing its data, it would acquire a mutex, do 
writes to the bus, and release the mutex. .. 

 The spacecraft also contained a communications 
task that ran with medium priority.” 

The MARS Pathfinder problem (3) 

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html 

 
High priority:        retrieval of data from shared memory 
Medium priority: communications task 
Low priority:         thread collecting meteorological data 
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 “… However, very infrequently it was possible for an interrupt to 
occur that caused the (medium priority) communications task to be 
scheduled during the short interval while the (high priority) 
information bus thread was blocked waiting for the (low priority) 
meteorological data thread. 

 In this case, the long-running communications task, having higher 
priority than the  meteorological task, would prevent it from 
running, consequently preventing the blocked information bus task 
from running. 

 After some time had passed, a watchdog timer would go off, notice 
that the data bus task had not been executed for some time, 
conclude that something had gone drastically wrong, and initiate a 
total system reset.” 

The MARS Pathfinder problem (4) 

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html 
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 Priority inheritance also solved the Mars 
Pathfinder problem: the VxWorks operating 
system used in the pathfinder implements a flag 
for the calls to mutex primitives. This flag allows 
priority inheritance to be set to “on”. When the 
software was shipped, it was set to “off”.  

Priority inversion on Mars 

The problem on Mars was corrected by 
using the debugging facilities of 
VxWorks to change the flag to “on”, 
while the Pathfinder was already on the 
Mars [Jones, 1997]. 
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 Possibly large number of tasks with high priority. 

 Possible deadlocks. 

 Ongoing debate about problems with the 
protocol: 

Victor Yodaiken: Against Priority Inheritance, Sept. 2004, 
http://www.fsmlabs.com/resources/white_papers/priority-inheritance/ 

 Finds application in ADA: During rendez-vous, 
task priority is set to the maximum. 

 Protocol for fixed set of tasks: priority ceiling 
protocol. 

Remarks on PIP 
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 The Priority Inheritance Protocol (PIP) 

o does not prevent deadlocks 

o can lead to chained blocking  

• (Several lower priority tasks can block a higher priority task) 

o and has inherent static priorities of tasks 

The Priority Ceiling Protocol (PCP) 

o avoids multiple blocking 

o guarantees that, once a task has entered a critical 
section, it cannot be blocked by lower priority tasks 
until its completion. 

PIPPCP 

Source: http://www.ida.liu.se/~unmbo/RTS_CUGS_files/Lecture3.pdf 
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 A task is not allowed to enter a critical section if there 
are already locked semaphores which could block it 
eventually 

 Hence, once a task enters a critical section, it can not 
be blocked by lower priority tasks until its completion. 

 This is achieved by assigning priority ceiling. 

 Each semaphore Sk is assigned a priority ceiling C(Sk). 
It is the priority of the highest priority task that can 
lock Sk. 
This is a static value. 

PCP 

Source: http://www.ida.liu.se/~unmbo/RTS_CUGS_files/Lecture3.pdf 
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Priority Ceiling: Example 

Source: http://www.ida.liu.se/ unmbo/RTS_CUGS_files/Lecture3.pdf 

1/15/2014 51 Kai.Huang@tum 



 Suppose T  is running and wants to lock semaphore Sk. 

 

 T is allowed to lock Sk only if 
priority of T > priority ceiling C(S*) of the semaphore 
S* where: 

o S* is the semaphore with the highest priority ceiling 
among all the semaphores which are currently locked by 
tasks other than T. 

o In this case, T is said to be blocked by the semaphore S* 
(and the task currently holding S*) 

o When T gets blocked by S * then the priority of T is 
transmitted to the task that currently holds S* 

PCP 
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PCP: An Example 
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PCP: An Example 
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 When T* leaves a critical section guarded by 
S* then it unlocks S* and the highest priority 
task, if any, which is blocked by S* is 
awakened  

 The priority of T* is set to the highest priority 
of the task that is blocked by some semaphore 
that T* is still holding. 
If none, the priority of T* is set to be its 
nominal one. 

PCP 
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PCP: Example 
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t6 : T3 unlocks S1. It awakens T1. But T3s (inherited) priority is now only P2 while P1>C(S2) 
=P2. So T1 preempts T3 and runs to completion. 

t7: T3 resumes execution with priority P2 

t8 : T3 unlocks S2, goes back to its priority P3. T2 preempts T3, runs to completion 
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PCP: Deadlock-Free Example 

Source: Lund University, course EDA 040, http://fileadmin.cs.lth.se/cs/Education/EDA040/lecture/RTP-F6b.pdf 
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 Deadlock free (only changing priorities) 

 A given task i is delayed at most once by a 
lower priority task 

 The delay is a function of the time taken to 
execute the critical section 

 Certain variants as to when the priority is 
changed 

 

PCP: Properties 
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 SRP supports dynamic priority scheduling 

 SRP blocks the task at the time it attempts to preempt. 

 Preemption level li of task i: decreasing function of 
deadline (larger deadline  easier to preempt) (Static)  

 Resource ceiling: of a resource is the highest 
preemption level from among all tasks that may access 
that resource (Static)  

 System ceiling: is the highest resource ceiling of all the 
resources which are currently blocked (dynamic, 
changes with resource accesses) 

Extending PCP: Stack Resource Policy (SRP) 

Source: http://www.ida.liu.se/~unmbo/RTS_CUGS_files/Lecture3.pdf 
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 A task can preempt another task if 

o it has the highest priority 

o and its preemption level is higher than the system ceiling 

 A task is not allowed to start until the resources 
currently available are sufficient to meet the maximum 
requirement of every task that could preempt it. 

 

 Why Stack Resource Policy? Tasks cannot be blocked by 
tasks with lower li, can resume only when the task 
completes. Tasks on the same li can share stack space. 
More tasks on the same li  higher stack space saving. 

SRP Policy 

Source: http://www.ida.liu.se/~unmbo/RTS_CUGS_files/Lecture3.pdf 
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 a 

SRP vs. PCP 

SRP 

PCP 

Less preemptions for SRP 

Source: http://www.ida.liu.se/ 
~unmbo/RTS_CUGS_files/ Lecture3.pdf 
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