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Analysis (I) 



 Nest Labs is a home automation 
company that designs and 
manufactures sensor-driven, Wi-
Fi-enabled, self-learning, 
programmable thermostats and 
smoke detectors 
 

 The Nest Thermostat allows 
interaction with the thermostat 
via spinning and clicking of its 
control wheel, which brings up 
option menus for switching from 
heating to cooling, access to 
device settings, energy history, 
and scheduling. 
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Google to buy Nest Labs for $3.2bn 



 Real-Time Model 

 Periodic/Aperiodic Tasks 
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Outline 



 Real-time systems 
o Hard: A real-time task is said to be hard, if missing its 

deadline may cause catastrophic consequences on the 
environment under control. Examples are sensory 
data acquisition, detection of critical conditions, 
actuator serving. 
 

o Soft: A real-time task is called soft, if meeting its 
deadline is desirable for performance reasons, but 
missing its deadline does not cause serious damage to 
the environment and does not jeopardize correct 
system behavior. Examples are command interpreter 
of the user interface, displaying messages on the 
screen. 
 

1/15/2014 Kai.Huang@tum 4 

Basic Terms 



 Given a set of tasks T = {T1, T2, … } : 
o A schedule is an assignment of tasks to the processor, 

such that each task is executed until completion. 
o A schedule can be defined as an integer step function 

σ: RN where σ(t) denotes the task which is executed 
at time t. If σ(t)=0 then the processor is called idle. 

o If σ(t) changes its value at some time, then the 
processor performs a context switch. 

o Each interval, in which σ(t) is constant is called a time 
slice. 

o A preemptive schedule is a schedule in which the 
running task can be arbitrarily suspended at any time, 
to assign the CPU to another task according to a 
predefined scheduling policy. 
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Schedule 



 A schedule is said to be feasible, if all task can be 
completed according to a set of specified constraints. 

 A set of tasks is said to be schedulable, if there exists at 
least one algorithm that can produce a feasible schedule. 
 

 Arrival time ai or release time ri is the time at which a task 
becomes ready for execution. 

 Computation time Ci is the time necessary to the processor 
for executing the task without interruption. 

 Deadline di is the time at which a task should be  
completed. 

 Start time Si is the time at which a task starts its execution. 
 Finishing time fi is the time at which a task finishes its 

execution. 
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Schedule and Timing 



 Using the above definitions, we have di  > ri + Ci 

 

 Lateness  Li  = fi  - di  represents the delay of a task completion with 
respect to its deadline; note that if a task completes before the 
deadline, its lateness is negative. 

 Tardiness or exceeding time Ei = max(0, Li) is the time a task stays 
active after its deadline. 

 Laxity or slack time Xi = di - ai - Ci  is the maximum time a task can 
be delayed on its activation to complete within its deadline. 
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Schedule and Timing 



 Periodic task τi : infinite sequence of identical activities, 
called instances or jobs, that are regularly activated at 
a constant rate with period Ti . The activation time of 
the first instance is called phase Φi . 
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Schedule and Timing 
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Example 



 Precedence relations between graphs can be described 
through an acyclic directed graph G where tasks are 
represented by nodes and precedence relations by 
arrows. G induces a partial order on the task set. 

 There are different interpretations possible: 
o All successors of a task are activated (concurrent task 

execution). 

o One successor of a task is activated (non-deterministic 
choice). 

 

1/15/2014 Kai.Huang@tum 10 

Precedence Constraints 



 Example (concurrent activation): 
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Precedence Constraints - Example 



 With preemptive algorithms, the running task can be 
interrupted at any time to assign the processor to 
another active task, according to a predefined 
scheduling policy. 

 With a non-preemptive algorithm, a task, once started, 
is executed by the processor until completion. 

 Static algorithms are those in which scheduling  
decisions are based on fixed parameters, assigned to 
tasks before their activation. 

 Dynamic algorithms are those in which scheduling 
decisions are based on dynamic parameters that may 
change during system execution. 
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Classification of Scheduling Algorithms 



 An algorithm is said optimal if it minimizes some given 
cost function defined over the task set. 

 An algorithm is said to be heuristic if it tends toward 
but does not guarantee to find the optimal schedule. 
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Classification of Scheduling Algorithms 

Domino effect, 
if acceptance test 
wrongly accepted 

a new task. 



 Average response time: 
 

 Total completion time: 
 

 Weighted sum of response time: 
 

 Maximum lateness: 
 

 Number of late tasks: 
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Metrics 
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Metrics Example 



 In (a), the maximum lateness is minimized, but all tasks 
miss their deadlines. 

 In (b), the maximal lateness is larger, but only one task 
misses its deadline. 
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Scheduling Example 



 Real-Time Model 

 Classical real-time scheduling for Periodic Tasks 

o Periodic Rate Monotonic (RM) 

o Earliest Deadline First (EDF) 
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Outline 



 Examples: sensory data acquisition, low-level servoing, control 
loops, action planning and  system monitoring. When a control 
application consists of several concurrent periodic tasks with 
individual timing constraints, the OS has to guarantee that each 
periodic instance is regularly activated at its proper rate and is 
completed within its deadline. 
 

 Definitions: 
Τ   : denotes a set of periodic tasks 
τi   : denotes a generic periodic task 

τi,j : denotes the jth instance of task i 

ri,j , si,j , fi,j , di,j : 

 denotes the release time, start time, finishing time, absolute deadline of 
the jth instance of task i 

Φi : phase of task i (release time of its first instance) 
Di   : relative deadline of task i 
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Model of Periodic Tasks 



 The following hypotheses are assumed on the tasks: 
o The instances of a periodic task are regularly activated at a 

constant rate. The interval Ti between two consecutive 
activations is called period. The release times satisfy 

    ri,j = Φi + (j-1) Ti 

 

 All instances have the same worst case execution time Ci  

 All instances of a periodic task have the same relative 
deadline Di. Therefore, the absolute deadlines satisfy 

     di,j = Φi + (j-1)Ti + Di  
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Model of Periodic Tasks 



 The following hypotheses are assumed on the 
tasks cont’: 
o Often, the relative deadline equals the period Ti + Di  

and therefore 

    di,j = Φi + jTi  

o All periodic tasks are independent; that is, there are 
no precedence relations and no resource constraints. 

o No task can suspend itself, for example on I/O 
operations. 

o All tasks are released as soon as they arrive. 

o All overheads in the OS kernel are assumed to be zero. 
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Model of Periodic Tasks 



 Example: 
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Model of Periodic Tasks 

τi 
Φi 

ri,1 ri,2 si,3 fi,3 

τi,3 

Ci 

Di 

Ti 



 Assumptions: 
o Task priorities are assigned to tasks before execution 

and do not change over time (static priority 
assignment). 

o RM is intrinsically preemptive: the currently executing 
task is preempted by a task with higher priority. 

o Deadlines equal the periods Ti = Di  
 

 Algorithm:  
o Each task is assigned a priority. Tasks with higher 

request rates (that is with shorter periods) will have 
higher priorities. Tasks with higher priority interrupt 
tasks with lower priority. 
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Rate Monotonic Scheduling (RM) 



 Example: 2 tasks, deadline = periods, U = 97% 
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Periodic Tasks 



 Optimality: RM is optimal among all fixed-priority 
assignments in the sense that not other fixed-priority 
algorithm can schedule a task set that cannot be scheduled 
by RM. 

 The proof is done by considering several cases that may 
occur, but the main ideas are as follows: 
o A critical instant for any task occurs whenever the task is 

released simultaneously with all higher priority tasks. The tasks 
schedulability can easily be checked at their critical instances. If 
all tasks are feasible at their critical instants, then the task set is 
schedulable in any other condition. 

o Show that, given two periodic tasks, if the schedule is feasible 
by an arbitrary priority assignment, then it is also feasible by 
RM. 

  Extend the result to a set of n periodic tasks. 
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Rate Monotonic Scheduling (RM) 



 Definition: A critical instant of a task is the time at 
which the release of a task will produce the largest 
response time. 

 Lemma: For any task, the critical instant occurs if that 
task is simultaneously released with all higher priority 
tasks. 

 Proof sketch: Start with 2 tasks  τ1 and τ2. Response 
time of τ2 is delayed by tasks τ1 of higher priority: 
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Proof of Critical Instance 

C2+2C1 

τ2 

τ1 

t 



 Delay may increase if τ1  starts earlier: 
 
 

 
 
 

 Maximum delay achieved if τ1 and τ1 start 
simultaneously. 

 Repeating the argument for all higher priority tasks of 
some task τ2 : 
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Proof of Critical Instance 

C2+3C1 

τ2 

τ1 

t 

The worst case response time of a task occurs when it is 
released simultaneously with all higher-priority tasks. 



 We have two tasks τ1, τ2 with periods  T1<T2 

  Define F= T2/T1: number of periods of τ1 fully 
contained in T2 

 Consider tow case A and B:  

 A: Assume RM is not used prio(τ2) is highest: 

 

 

 

 

 Schedule is feasible if    C2 +C1<T1  (A) 
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Proof of RM Optimality (2 Tasks) 

τ1 

τ2 t 

C1 

C2  

T1 



 B: Assume RM is used  prio(τ1 ) is highest 
 
 
 
 

 Schedulable if 
 FC1 + C2 + min(T2- FT1, C1 ) ≤ T2 and C1 ≤ T1    (B)  

 We need to show that (A)     (B): C1+C2 ≤ T1      C1 ≤ T1  
  C1+C2 ≤ T1      FC1 + C2 ≤ FC1 + FC2 ≤ FT1   
  FC1 + C2 + min(T2- FT1, C1 ) ≤ FT1 + min(T2- FT1, C1 )  

             ≤ min(T2 , C1 + FT1) ≤ T2 
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Proof of RM Optimality (2 Tasks) 

t 

T2 FT1 

C1 T2 - FT1 

τ1 

τ2 

Given tasks τ1 and τ2 with T1 < T2, then if the schedule is feasible by 
an arbitrary fixed priority assignment, it is also feasible by RM. 

 

 



 Schedulability analysis: A set of periodic tasks is 
schedulable with RM if 
 
 

   
 This condition is sufficient 
  but not necessary. 

 

 The term  
 

 denotes the processor utilization factor U which is the 
fraction of processor time spent in the execution of the 
task set. 
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Rate Monotonic Scheduling (RM) 
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 We have two tasks τ1, τ2 with periods T1<T2. 
Define F= T2/T1 : number of periods of τ1 fully 
contained in T2 

 

 Proof procedure: Compute upper bound on 
utilization U 

o assign priorities according to RM; 

o compute upper bound Uup by setting computation 
times to fully utilize processor (C2 adjusted to fully 
utilize processor); 

o minimize upper bound with respect to other task 
parameters. 
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Proof of Utilization Bound (2 Tasks) 



 As before: 
 
 
 

 
 Schedulable if 
  FC1 + C2 + min(T2- FT1, C1 ) ≤ T2 and C1 ≤ T1  

 

 Utilization: 
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Proof of Utilization Bound (2 Tasks) 
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 Minimize utilization bound w.r.t. C1 : 
o If C1≤ T2 -FT1 then U decreases with increasing C1 

o If T2 -FT1 ≤ C1 then U decreases with decreasing C1 

o Therefore, minimum U is obtained with C1 = T2 - FT1 : 

 

 

 

 

 

 We now need to minimize w.r.t. G = T2 / T1 where F= 
T2/T1 and T1 ≤ T2 . As F is integer, we first suppose 
that it is independent of G = T2 / T1. We obtain 
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Proof of Utilization Bound (2 Tasks) 
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 Minimizing U with respect to G yields 
 
 

 If we set F = 1, then we obtain 
 
 

 It can easily be checked, that all other integer 
values for F lead to a larger upper bound on the 
utilization. 
 

1/15/2014 Kai.Huang@tum 33 

Proof of Utilization Bound (2 Tasks) 
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 Real-Time Model 

 Classical real-time scheduling for Periodic Tasks 

o Periodic Rate Monotonic (RM) 

o Earliest Deadline First (EDF) 
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Outline 



 Assumptions: 
o dynamic priority assignment 
o intrinsically preemptive 
o Di ≤ Ti  

 Algorithm: The currently executing task is preempted 
whenever another periodic instance with earlier deadline 
becomes active.  
 
 

 Optimality: No other algorithm can schedule a set of 
periodic tasks if the set that can not be scheduled by EDF. 

 The proof is simple and follows that of the aperiodic case. 
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EDF Scheduling (earliest deadline first) 
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 A necessary and sufficient schedulability test if Di = Ti : 

o A set of periodic tasks is schedulable with EDF if and 
only if 

 

 The term 

 

 

 denotes the average processor utilization. 
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EDF Scheduling 
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 If the utilization satisfies U >1, then there is no valid 
schedule: The total demand of computation time in 
interval T = T1 ∙T2 ∙ …∙Tn  is 

 

 

 and therefore, it exceeds the available processor time. 

 

 If the utilization satisfies U ≤ 1, then there is a valid 
schedule. 
o We will proof this by contradiction: Assume that deadline 

is missed at some time t2. Then we will show that the 
utilization was larger than 1. 
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EDF Scheduling 
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 If the deadline was missed at t2 then define t1 as the maximal time 
before t2 where 
o the processor is continuously busy in [t1, t2 ] and 
o the processor only executes tasks that have their arrival time AND 

deadline in [t1, t2 ] . 

 Why does such a time t1 exist? 
o We find such a t1 by starting at t2 and going backwards in time, always 

ensuring that the processor only executed tasks that have their 
deadline before or at t2 : 
• Because of EDF, the processor will be busy shortly before t2 and it executes on 

the task that has deadline at t2. 
• Suppose that we reach a time when the processor gets idle, then we found t1 : 

There is a task arrival at t1 and the task queue is empty shortly before. 
• Suppose that we reach a time such that shortly before the processor works on 

a task with deadline after t2, then we also found t1 : Because of EDF, all tasks 
the processor processed in [t1, t2] arrived at or after t1 (otherwise, the 
processor would not have operated before t1 on a task with deadline after t2). 
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EDF Scheduling 



 Within the interval [t1, t2 ] the total computation 
time demanded by the periodic tasks is bounded 
by 
 
 
 
 

 Since the deadline at time t2 is missed, we must 
have: 
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EDF Scheduling 
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 Example: 2 tasks, deadline = periods, U = 97% 
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Periodic Tasks 


