
Kai Huang

Analysis (I)

 Nest Labs is a home automation
company that designs and
manufactures sensor-driven, Wi-
Fi-enabled, self-learning,
programmable thermostats and
smoke detectors

 The Nest Thermostat allows
interaction with the thermostat
via spinning and clicking of its
control wheel, which brings up
option menus for switching from
heating to cooling, access to
device settings, energy history,
and scheduling.

1/15/2014 Kai.Huang@tum 2

Google to buy Nest Labs for $3.2bn

 Real-Time Model

 Periodic/Aperiodic Tasks

1/15/2014 Kai.Huang@tum 3

Outline

 Real-time systems
o Hard: A real-time task is said to be hard, if missing its

deadline may cause catastrophic consequences on the
environment under control. Examples are sensory
data acquisition, detection of critical conditions,
actuator serving.

o Soft: A real-time task is called soft, if meeting its
deadline is desirable for performance reasons, but
missing its deadline does not cause serious damage to
the environment and does not jeopardize correct
system behavior. Examples are command interpreter
of the user interface, displaying messages on the
screen.

1/15/2014 Kai.Huang@tum 4

Basic Terms

 Given a set of tasks T = {T1, T2, … } :
o A schedule is an assignment of tasks to the processor,

such that each task is executed until completion.
o A schedule can be defined as an integer step function

σ: RN where σ(t) denotes the task which is executed
at time t. If σ(t)=0 then the processor is called idle.

o If σ(t) changes its value at some time, then the
processor performs a context switch.

o Each interval, in which σ(t) is constant is called a time
slice.

o A preemptive schedule is a schedule in which the
running task can be arbitrarily suspended at any time,
to assign the CPU to another task according to a
predefined scheduling policy.

1/15/2014 Kai.Huang@tum 5

Schedule

 A schedule is said to be feasible, if all task can be
completed according to a set of specified constraints.

 A set of tasks is said to be schedulable, if there exists at
least one algorithm that can produce a feasible schedule.

 Arrival time ai or release time ri is the time at which a task
becomes ready for execution.

 Computation time Ci is the time necessary to the processor
for executing the task without interruption.

 Deadline di is the time at which a task should be
completed.

 Start time Si is the time at which a task starts its execution.
 Finishing time fi is the time at which a task finishes its

execution.

1/15/2014 Kai.Huang@tum 6

Schedule and Timing

 Using the above definitions, we have di > ri + Ci

 Lateness Li = fi - di represents the delay of a task completion with
respect to its deadline; note that if a task completes before the
deadline, its lateness is negative.

 Tardiness or exceeding time Ei = max(0, Li) is the time a task stays
active after its deadline.

 Laxity or slack time Xi = di - ai - Ci is the maximum time a task can
be delayed on its activation to complete within its deadline.

1/15/2014 Kai.Huang@tum 7

Schedule and Timing

 Periodic task τi : infinite sequence of identical activities,
called instances or jobs, that are regularly activated at
a constant rate with period Ti . The activation time of
the first instance is called phase Φi .

1/15/2014 Kai.Huang@tum 8

Schedule and Timing

1/15/2014 Kai.Huang@tum 9

Example

 Precedence relations between graphs can be described
through an acyclic directed graph G where tasks are
represented by nodes and precedence relations by
arrows. G induces a partial order on the task set.

 There are different interpretations possible:
o All successors of a task are activated (concurrent task

execution).

o One successor of a task is activated (non-deterministic
choice).

1/15/2014 Kai.Huang@tum 10

Precedence Constraints

 Example (concurrent activation):

1/15/2014 Kai.Huang@tum 11

Precedence Constraints - Example

 With preemptive algorithms, the running task can be
interrupted at any time to assign the processor to
another active task, according to a predefined
scheduling policy.

 With a non-preemptive algorithm, a task, once started,
is executed by the processor until completion.

 Static algorithms are those in which scheduling
decisions are based on fixed parameters, assigned to
tasks before their activation.

 Dynamic algorithms are those in which scheduling
decisions are based on dynamic parameters that may
change during system execution.

1/15/2014 Kai.Huang@tum 12

Classification of Scheduling Algorithms

 An algorithm is said optimal if it minimizes some given
cost function defined over the task set.

 An algorithm is said to be heuristic if it tends toward
but does not guarantee to find the optimal schedule.

1/15/2014 Kai.Huang@tum 13

Classification of Scheduling Algorithms

Domino effect,
if acceptance test
wrongly accepted

a new task.

 Average response time:

 Total completion time:

 Weighted sum of response time:

 Maximum lateness:

 Number of late tasks:

1/15/2014 Kai.Huang@tum 14

Metrics

1/15/2014 Kai.Huang@tum 15

Metrics Example

 In (a), the maximum lateness is minimized, but all tasks
miss their deadlines.

 In (b), the maximal lateness is larger, but only one task
misses its deadline.

1/15/2014 Kai.Huang@tum 16

Scheduling Example

 Real-Time Model

 Classical real-time scheduling for Periodic Tasks

o Periodic Rate Monotonic (RM)

o Earliest Deadline First (EDF)

1/15/2014 Kai.Huang@tum 17

Outline

 Examples: sensory data acquisition, low-level servoing, control
loops, action planning and system monitoring. When a control
application consists of several concurrent periodic tasks with
individual timing constraints, the OS has to guarantee that each
periodic instance is regularly activated at its proper rate and is
completed within its deadline.

 Definitions:
Τ : denotes a set of periodic tasks
τi : denotes a generic periodic task

τi,j : denotes the jth instance of task i

ri,j , si,j , fi,j , di,j :

 denotes the release time, start time, finishing time, absolute deadline of
the jth instance of task i

Φi : phase of task i (release time of its first instance)
Di : relative deadline of task i

1/15/2014 Kai.Huang@tum 18

Model of Periodic Tasks

 The following hypotheses are assumed on the tasks:
o The instances of a periodic task are regularly activated at a

constant rate. The interval Ti between two consecutive
activations is called period. The release times satisfy

 ri,j = Φi + (j-1) Ti

 All instances have the same worst case execution time Ci

 All instances of a periodic task have the same relative
deadline Di. Therefore, the absolute deadlines satisfy

 di,j = Φi + (j-1)Ti + Di

1/15/2014 Kai.Huang@tum 19

Model of Periodic Tasks

 The following hypotheses are assumed on the
tasks cont’:
o Often, the relative deadline equals the period Ti + Di

and therefore

 di,j = Φi + jTi

o All periodic tasks are independent; that is, there are
no precedence relations and no resource constraints.

o No task can suspend itself, for example on I/O
operations.

o All tasks are released as soon as they arrive.

o All overheads in the OS kernel are assumed to be zero.

1/15/2014 Kai.Huang@tum 20

Model of Periodic Tasks

 Example:

1/15/2014 Kai.Huang@tum 21

Model of Periodic Tasks

τi
Φi

ri,1 ri,2 si,3 fi,3

τi,3

Ci

Di

Ti

 Assumptions:
o Task priorities are assigned to tasks before execution

and do not change over time (static priority
assignment).

o RM is intrinsically preemptive: the currently executing
task is preempted by a task with higher priority.

o Deadlines equal the periods Ti = Di

 Algorithm:
o Each task is assigned a priority. Tasks with higher

request rates (that is with shorter periods) will have
higher priorities. Tasks with higher priority interrupt
tasks with lower priority.

 1/15/2014 Kai.Huang@tum 22

Rate Monotonic Scheduling (RM)

 Example: 2 tasks, deadline = periods, U = 97%

1/15/2014 Kai.Huang@tum 23

Periodic Tasks

 Optimality: RM is optimal among all fixed-priority
assignments in the sense that not other fixed-priority
algorithm can schedule a task set that cannot be scheduled
by RM.

 The proof is done by considering several cases that may
occur, but the main ideas are as follows:
o A critical instant for any task occurs whenever the task is

released simultaneously with all higher priority tasks. The tasks
schedulability can easily be checked at their critical instances. If
all tasks are feasible at their critical instants, then the task set is
schedulable in any other condition.

o Show that, given two periodic tasks, if the schedule is feasible
by an arbitrary priority assignment, then it is also feasible by
RM.

 Extend the result to a set of n periodic tasks.

1/15/2014 Kai.Huang@tum 24

Rate Monotonic Scheduling (RM)

 Definition: A critical instant of a task is the time at
which the release of a task will produce the largest
response time.

 Lemma: For any task, the critical instant occurs if that
task is simultaneously released with all higher priority
tasks.

 Proof sketch: Start with 2 tasks τ1 and τ2. Response
time of τ2 is delayed by tasks τ1 of higher priority:

1/15/2014 Kai.Huang@tum 25

Proof of Critical Instance

C2+2C1

τ2

τ1

t

 Delay may increase if τ1 starts earlier:

 Maximum delay achieved if τ1 and τ1 start
simultaneously.

 Repeating the argument for all higher priority tasks of
some task τ2 :

1/15/2014 Kai.Huang@tum 26

Proof of Critical Instance

C2+3C1

τ2

τ1

t

The worst case response time of a task occurs when it is
released simultaneously with all higher-priority tasks.

 We have two tasks τ1, τ2 with periods T1<T2

 Define F= T2/T1: number of periods of τ1 fully
contained in T2

 Consider tow case A and B:

 A: Assume RM is not used prio(τ2) is highest:

 Schedule is feasible if C2 +C1<T1 (A)

1/15/2014 Kai.Huang@tum 27

Proof of RM Optimality (2 Tasks)

τ1

τ2 t

C1

C2

T1

 B: Assume RM is used  prio(τ1) is highest

 Schedulable if
 FC1 + C2 + min(T2- FT1, C1) ≤ T2 and C1 ≤ T1 (B)

 We need to show that (A) (B): C1+C2 ≤ T1 C1 ≤ T1
 C1+C2 ≤ T1 FC1 + C2 ≤ FC1 + FC2 ≤ FT1
 FC1 + C2 + min(T2- FT1, C1) ≤ FT1 + min(T2- FT1, C1)

 ≤ min(T2 , C1 + FT1) ≤ T2

1/15/2014 Kai.Huang@tum 28

Proof of RM Optimality (2 Tasks)

t

T2 FT1

C1 T2 - FT1

τ1

τ2

Given tasks τ1 and τ2 with T1 < T2, then if the schedule is feasible by
an arbitrary fixed priority assignment, it is also feasible by RM.

 

 

 Schedulability analysis: A set of periodic tasks is
schedulable with RM if

 This condition is sufficient
 but not necessary.

 The term

 denotes the processor utilization factor U which is the
fraction of processor time spent in the execution of the
task set.

1/15/2014 Kai.Huang@tum 29

Rate Monotonic Scheduling (RM)

)12(/1

1




n
n

i i

i n
T

C





n

i i

i

T

C
U

1

 We have two tasks τ1, τ2 with periods T1<T2.
Define F= T2/T1 : number of periods of τ1 fully
contained in T2

 Proof procedure: Compute upper bound on
utilization U

o assign priorities according to RM;

o compute upper bound Uup by setting computation
times to fully utilize processor (C2 adjusted to fully
utilize processor);

o minimize upper bound with respect to other task
parameters.

1/15/2014 Kai.Huang@tum 30

Proof of Utilization Bound (2 Tasks)

 As before:

 Schedulable if
 FC1 + C2 + min(T2- FT1, C1) ≤ T2 and C1 ≤ T1

 Utilization:

1/15/2014 Kai.Huang@tum 31

Proof of Utilization Bound (2 Tasks)

t

T2 FT1

C1 T2 - FT1

τ1

τ2

12

1122121

2

11212

1

1

2

2

1

1

},min{)(
1

},min{

TT

CFTTTFTTC

p

CFTTFCT

T

C

T

C

T

C
U







 Minimize utilization bound w.r.t. C1 :
o If C1≤ T2 -FT1 then U decreases with increasing C1

o If T2 -FT1 ≤ C1 then U decreases with decreasing C1

o Therefore, minimum U is obtained with C1 = T2 - FT1 :

 We now need to minimize w.r.t. G = T2 / T1 where F=
T2/T1 and T1 ≤ T2 . As F is integer, we first suppose
that it is independent of G = T2 / T1. We obtain

 1/15/2014 Kai.Huang@tum 32

Proof of Utilization Bound (2 Tasks)

))()((1

)()(
 1

1

22

1

2

2

1

12

121

2

12

F
T

T
F

T

T

T

T

TT

FTTTFTT
U






 Minimizing U with respect to G yields

 If we set F = 1, then we obtain

 It can easily be checked, that all other integer
values for F lead to a larger upper bound on the
utilization.

1/15/2014 Kai.Huang@tum 33

Proof of Utilization Bound (2 Tasks)

G

FFG
FF

T

T

T

T
U




2
2

1

2

2

1)(
)))((

0)()()(2 222  FFGFFGFGG

2
1

2 
T

T
G)12(2 U

 Real-Time Model

 Classical real-time scheduling for Periodic Tasks

o Periodic Rate Monotonic (RM)

o Earliest Deadline First (EDF)

1/15/2014 Kai.Huang@tum 34

Outline

 Assumptions:
o dynamic priority assignment
o intrinsically preemptive
o Di ≤ Ti

 Algorithm: The currently executing task is preempted
whenever another periodic instance with earlier deadline
becomes active.

 Optimality: No other algorithm can schedule a set of
periodic tasks if the set that can not be scheduled by EDF.

 The proof is simple and follows that of the aperiodic case.

1/15/2014 Kai.Huang@tum 35

EDF Scheduling (earliest deadline first)

iiiji DTjd )1(,

 A necessary and sufficient schedulability test if Di = Ti :

o A set of periodic tasks is schedulable with EDF if and
only if

 The term

 denotes the average processor utilization.

1/15/2014 Kai.Huang@tum 36

EDF Scheduling

1
1




U
T

Cn

i i

i





n

i i

i

T

C
U

1

 If the utilization satisfies U >1, then there is no valid
schedule: The total demand of computation time in
interval T = T1 ∙T2 ∙ …∙Tn is

 and therefore, it exceeds the available processor time.

 If the utilization satisfies U ≤ 1, then there is a valid
schedule.
o We will proof this by contradiction: Assume that deadline

is missed at some time t2. Then we will show that the
utilization was larger than 1.

1/15/2014 Kai.Huang@tum 37

EDF Scheduling

TUTT
T

Cn

i i

i 
1

 If the deadline was missed at t2 then define t1 as the maximal time
before t2 where
o the processor is continuously busy in [t1, t2] and
o the processor only executes tasks that have their arrival time AND

deadline in [t1, t2] .

 Why does such a time t1 exist?
o We find such a t1 by starting at t2 and going backwards in time, always

ensuring that the processor only executed tasks that have their
deadline before or at t2 :
• Because of EDF, the processor will be busy shortly before t2 and it executes on

the task that has deadline at t2.
• Suppose that we reach a time when the processor gets idle, then we found t1 :

There is a task arrival at t1 and the task queue is empty shortly before.
• Suppose that we reach a time such that shortly before the processor works on

a task with deadline after t2, then we also found t1 : Because of EDF, all tasks
the processor processed in [t1, t2] arrived at or after t1 (otherwise, the
processor would not have operated before t1 on a task with deadline after t2).

1/15/2014 Kai.Huang@tum 38

EDF Scheduling

 Within the interval [t1, t2] the total computation
time demanded by the periodic tasks is bounded
by

 Since the deadline at time t2 is missed, we must
have:

1/15/2014 Kai.Huang@tum 39

EDF Scheduling

UttC
T

tt
C

T

tt
ttC i

n

i i

i

n

i i

p)(),(12

1

12

1

12
21 










 
 



number of complete periods
of task I in the interval

1)(),(122112  UUttttCtt p

 Example: 2 tasks, deadline = periods, U = 97%

1/15/2014 Kai.Huang@tum 40

Periodic Tasks

