

Analysis (III) Low Power Design

Kai Huang

Chinese new year: 1.3 billion urban exodus

The interactive map, which is updated hourly
The thicker, brighter lines are the busiest routes.
Current view 28.01.2014 9am by Baidu

1/28/2014

Outline

- General Remarks
- Power and Energy
- Basic Techniques

 \circ Parallelism

1/28/2014

 \circ VLIW (parallelism and reduced overhead)

Kai.Huang@tum

- Dynamic Voltage Scaling
- Dynamic Power Management

Power and Energy Consumption

"Power is considered as the most important constraint in embedded systems."

[in: L. Eggermont (ed): Embedded Systems Roadmap 2002, STW]

"Power demands are increasing rapidly, yet battery capacity cannot keep up."

Kai.Huang@tum

1/28/2014

[in Diztel et al.: Power-Aware Architecting for data-dominated applications, 2007, Springer]

Implementation Alternatives

Kai.Huang@tum

5

1/28/2014

Energy Efficiency

Outline

- General Remarks
- Power and Energy
- Basic Techniques
 - Parallelism

1/28/2014

- VLIW (parallelism and reduced overhead)
- Dynamic Voltage Scaling
- Dynamic Power Management

Power and Energy are Related

In many cases, faster execution also means less energy, but the opposite may be true if power has to be increased to allow faster execution.

Kai.Huang@tum

8

1/28/2014

Low Power vs. Low Energy

- Minimizing the power consumption is important for
 - \circ the design of the power supply
 - \circ the design of voltage regulators
 - \circ the dimensioning of interconnect
 - cooling (short term cooling)
 - high cost (estimated to be rising at \$1 to \$3 per Watt for heat dissipation [Skadron et al. ISCA 2003])
 - limited space

1/28/2014

Minimizing the energy consumption is important due to

Kai.Huang@tum

- restricted availability of energy (mobile systems)
- limited battery capacities (only slowly improving)
- very high costs of energy (solar panels, in space)
- \circ long lifetimes, low temperatures

Power Consumption of a CMOS Gate

Power Consumption of CMOS Processors

- Main sources:
 - Dynamic power consumption
 - charging and discharging capacitors
 - Short circuit power consumption
 - short circuit path between supply rails during switching
 - \circ Leakage

1/28/2014

- leaking diodes and translators
- becomes one of the major factors due to shrinking feature sizes in semiconductor technology

V_{DD}

(Gate)

(Subthreshold

Cload

⁽Micro32 Keynotes by Fred Pollack)

Dynamic Voltage Scaling (DVS)

Power consumption of CMOS circuits (ignoring leakage):

 $P \sim \alpha C_L V_{dd}^2 f$

- : supply voltage
- : switching activity
- : load capacity

1/28/2014

: clock frequency

Delay for CMOS circuits:

$$au = kC_L rac{V_{dd}}{(V_{dd} - V_T)^2}$$
 V_{dd} : supply voltage
 V_T : threshold voltage
 $V_T \ll V_{dd}$

Decreasing V_{dd} reduces P quadratically (*f* constant).
 The gate delay increases only reciprocally.

• Maximal frequency f_{max} decreases linearly.

 V_{dd}

α

 C_L

f

Potential for Energy Optimization: DVS

 $P \sim \alpha C_L V_{dd}^2 f$

$$E \sim \alpha C_L V_{dd}^2 ft = \alpha C_L V_{dd}^2 \ (\text{\#cycles})$$

- Saving energy for a given task:
 - \odot Reduce the supply voltage V_{dd}
 - \circ Reduce switching activity α
 - \circ Reduce the load capacitance C_L
 - \odot Reduce the number of cycles #cycles

Example: Voltage Scaling

Power Supply Gating

- Power gating is one of the most effective ways of minimizing static power consumption (leakage)
 - Cut-off power supply to inactive units/components
 - Reduces leakage

1/28/2014

Outline

- General Remarks
- Power and Energy
- Basic Techniques
 - Parallelism

1/28/2014

VLIW (parallelism and reduced overhead)

- Dynamic Voltage Scaling
- Dynamic Power Management

Use of Parallelism

1/28/2014

100

 $E \sim V_{dd}^2 \; (\# \text{cycles})$ $E_2 = \frac{1}{4} E_1$

Use of Pipelining

 $E \sim V_{dd}^2 \; (\# \text{cycles})$ $E_2 = \frac{1}{4} E_1$

1/28/2014

Outline

- General Remarks
- Power and Energy
- Basic Techniques

Parallelism

1/28/2014

 \odot VLIW (parallelism and reduced overhead)

Kai.Huang@tum

- Dynamic Voltage Scaling
- Dynamic Power Management

New ideas help ...

Pentium

1/28/2014

Crusoe

20

Running the same multimedia application. As published by Transmeta [www.transmeta.com]

VLIW Architectures

- Large degree of parallelism

 many computational units, (deeply) pipelined
- Simple hardware architecture

 explicit parallelism (parallel instruction set)

parallelization is done offline (compiler)

Kai.Huang@tum

1/28/2014

Transmeta is a typical VLIW Architecture

- 128-bit instructions (bundles):
 - \circ 4 operations per instruction
 - 2 combinations of instructions allowed
- Register files
 - 64 integer, 32 floating point
- Some interesting features
 - 6 stage pipeline (2x fetch, decode, register read, execute, write)
 - \odot X86 ISA execution using software techniques
 - Skip the binary compatibility problem !!
 - Interpretation and just-in-time binary translation

Kai.Huang@tum

Speculation support

Transmeta

Outline

- General Remarks
- Power and Energy
- Basic Techniques
 - Parallelism

1/28/2014

VLIW (parallelism and reduced overhead)

Kai.Huang@tum

- Dynamic Voltage Scaling
- Oynamic Power Management

Spatial vs. Dynamic Voltage Management

Not all components require same performance.

1/28/2014

Potential for Energy Optimization: DVS

 $P \sim \alpha C_L V_{dd}^2 f$ $E \sim \alpha C_L V_{dd}^2 f t = \alpha C_L V_{dd}^2 \ (\text{\#cycles})$

- Saving energy for a given task:
 - \odot Reduce the supply voltage V_{dd}
 - \circ Reduce switching activity α

1/28/2014

- \circ Reduce the load capacitance C_L
- \circ Reduce the number of cycles #cycles

Example: INTEL Xscale

POWER-PERFORMANCE COMPARISON

Kai.Huang@tum

OS should schedule distribution of the energy budget.

27

1/28/2014

DVS Example: a) Complete Task ASAP

 Task that need to execute 10² cycles within 25 seconds.

1/28/2014

<i>V_{dd}</i> [V]	5.0	4.0	2.5
Energy per cycle [nJ]	40	25	10
f_{max} [MHz]	50	40	25
Cycle time [ns]	20	25	40

DVS Example: b) Two Voltages

 Task that need to execute 10² cycles within 25 seconds.

<i>V_{dd}</i> [V]	5.0	4.0	2.5
Energy per cycle [nJ]	40	25	10
f_{max} [MHz]	50	40	25
Cycle time [ns]	20	25	40

DVS Example: c) Optimal Voltage

 Task that need to execute 10² cycles within 25 seconds.

1/28/2014

<i>V_{dd}</i> [V]	5.0	4.0	2.5
Energy per cycle [nJ]	40	25	10
f_{max} [MHz]	50	40	25
Cycle time [ns]	20	25	40

Kai.Huang@tum

 $E_b = 10^9 \times 25 \times 10^{-9}$ = 25[J]

30

Ì

Outline

- General Remarks
- Power and Energy
- Basic Techniques
 - Parallelism

1/28/2014

VLIW (parallelism and reduced overhead)

Kai.Huang@tum

- Dynamic Voltage Scaling
- Dynamic Power Management

Dynamic Power V.S. Static Power

1/28/2014

Transmeta[™] LongRun[™] Power Management

all a

Dynamic Power Management (DPM)

Dynamic Power management tries to assign optimal **power saving states**

Kai.Huang@tum

Requires Hardware Support

Example: StrongARM SA1100

 RUN: operational
 IDLE: a SW routine may stop the CPU when not in use, while monitoring interrupts
 SLEEP: Shutdown of on-chip activity

1/28/2014

Reduce Power According to Workload

→ Tradeoff between savings and overhead

Kai.Huang@tum

1/28/2014

Reduce Static Power Example

Assumption

 Given arrival curve, buffer size and deadline requirement, power parameters

Problem statement

1/28/2014

- \odot To determine the on/off periods such that
 - energy consumption is minimized
 - no deadline violation and buffer overflow

Kai.Huang@tum

Details see the HuangDPMOffline2009 paper

Basic Idea: Use RTC to Compute Bounds

- β^b(Δ) = α^u(Δ − D) is the service demand to avoid deadline violation
- $\beta^{\dagger}(\Delta) = \alpha^{u}(\Delta) B$ is the service demand to avoid buffer overflow

1/28/2014

Basic Idea: Choose the Bound of Min Energy

Derive a periodic on/off curve which energy consumption is minimized $\beta^{G}(\Delta) = \max\left(\left\lfloor\frac{\Delta}{T_{on}+T_{off}}\right\rfloor \cdot T_{on}, \Delta - \left\lceil\frac{\Delta}{T_{on}+T_{off}}\right\rceil \cdot T_{off}\right) \geq \max\{\beta^{\dagger}, \beta^{\flat}\}$ $E(L, T_{on}, T_{off}) = \frac{L}{T_{on}+T_{off}}E_{sw} + \frac{L \cdot T_{on}}{T_{on}+T_{off}}P_{s} + \frac{L \cdot T_{off}}{T_{on}+T_{off}}P_{\sigma}$ $+ \sum_{S_{i} \in S} w_{i} \cdot \gamma_{i}(L) \cdot (P_{a} - P_{s})$ 1/28/2014
Kai.Huang@tum

Bounding Delay Approximation

