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Specification and Modeling 



 70M French phones/month,  60M Spain phones/month, … 
 Cray XC30 series (64-bit Intel® Xeon® processor E5 family) 
 The completed facility is expected to require 65 megawatts, 

costing about $40 million per year 
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News 



 Model of Computation (MoC) 

 StateCharts 

 Data-Flow Models 
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Outline 



 The first step in designing Embedded System is to precisely 
tell what the system behavior should be. 
 

  
 
 
 This can be extremely difficult 

o Increasing complexity of Embedded Systems 
o Desired behavior often not fully understood in the beginning 

 If something is wrong with the specification, then it will be 
difficult to get the design right, potentially wasting a lot of 
time. 

 How can we (correctly and precisely) capture systems 
behavior? 
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Why Considering Specifications? 

Specification: correct, clear and unambiguous 
description of the required system behavior. 



 Typically, we work with models of the system 
under design at different levels of abstraction 

 Levels of abstraction alleviate the complexity 
problem of specification 
o Levels of abstraction has be discussed previously 

 Models allow to reason about the systems 
under design, thereby identifying and 
correcting flaws in the specification 

 

 What is a model? 
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Model-Based Specifications 



Modeling means forgetting 
 

 What are the requirements for Model-based 
Specification techniques for Embedded Systems? 
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Model 

Definition: A model is a simplification of another entity, 
which can be a physical thing or another model. The 
model contains exactly those characteristics and 
properties of the modeled entity that are relevant for a 
given task. A model is minimal with respect to a task if it 
does not contain any other characteristics than those 
relevant for the task.   [Jantsch, 2004] 



 Modularity 
o Systems specified as a composition of objects 

 Represent hierarchy 
o Humans not capable to understand systems 

containing more than a few objects. 

o Behavioral hierarchy 
• Examples: statements->procedures->programs 

o Structural hierarchy 
• Examples: transistors->gates->processors->printed circuit 

boards 

 Concurrency, synchronization and communication 
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Requirements for Model & Spec. Techniques (1) 



 Represent timing behavior/requirements 

o Timing is essential for embedded systems! 

o Four types of timing specs required [Burns, 1990] 
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Requirements for Model & Spec. Techniques (2) 

t 

? execution 

t t 

1. Measure elapsed time: Check, how 
much time has elapsed since last call 

3. Possibility to specify timeouts : 
 Stay in a certain state a maximum time 

2. Means for delaying processes  4. Methods for specifying deadlines 



 Represent state-oriented behavior 

o Required for reactive systems 

 Represent dataflow-oriented behavior 

o Components send streams of data to each other 

 

 No obstacles for efficient implementation 
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Requirements for Model & Spec. Techniques (3) 



 Components and an execution model for 
computations for each component 

 Communication model for exchange of 
information between components 
o Shared memory 

oMessage passing 

o … 
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Models of Computation (MoC): Definition 

There is NO model of computation that meets all 
specification requirements previously discussed 
 using compromises 



 An instruction set, a memory, and a program counter, is 
all need to execute whatever application one can 
dream of 
o Basically sequential execution 

 

 Von Neumann model of computation does not match 
well with requirements for embedded system design 
o This model does not consider timing requirements and 

constraints, e.g., 
• Timing cannot be described (instructions cannot be delayed or 

forced to execute at a specific time) 
• Timing deadlines cannot be specified for instructions or sequence 

of instructions 
• Timeouts cannot be specified for sequence of instructions 

o No way of  concurrency  
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Von Neumann Model 



 “... threads as a concurrency model are a poor match 
for embedded systems. ... they work well only ... where 
best-effort scheduling policies are sufficient.” 

 

 

 Thread-based processing may access global variables 

 We know from the theory of operating systems that 
o Access to global variables might lead to race conditions 

o To avoid these, we need to use mutual exclusion 

o Mutual exclusion may lead to deadlocks 

o Avoiding deadlocks is possible only if we accept 
performance penalties 
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Thread-based Concurrency Models 

Edward Lee: Absolutely Positively on 
Time, IEEE Computer, July, 2005 



 “The Observer pattern defines a one-to-many 
dependency between a subject object and any 
number of observer objects so that when the 
subject object changes state, all its observer 
objects are notified and updated automatically.” 
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An Example 

Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns, Addision-Wesley, 1995 
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Observer Pattern in Java 

Add observer listener 
to data structure 
myListeners 

Changes subject state 

Changes observer state 

What happens in a multi-threaded context? 
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Observer Pattern with Mutexes 

Resolves race condition between addListener and setValue 
 
Javasoft recommends against this! What’s wrong with it? 
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Mutexes are Minefields 

valueChanged() may attempt to acquire a lock on some other 
(independent) object and stall. If the holder of that lock calls 
addListener(): deadlock! 
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Simple observer pattern gets complicated 

This still isn’t right. 
What’s wrong with it? 

while holding lock, make a 
copy of listeners to avoid 
race conditions  

notify each listener outside 
of the synchronized block to 
avoid deadlock 
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Simple observer pattern: How to make it right? 

Suppose two threads call setValue(). One of them will set the value 
last, leaving that value in the object, but listeners may be notified in 
the opposite order. Listeners may finally have different values. 
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A Replicable Simple Example  

http://javaeesupportpatterns.blogspot.ca/2013/01/java-concurrency-hidden-thread-deadlocks.html 
Another latest article: 



 Nontrivial software written with threads, 
semaphores, and mutexes is incomprehensible to 
humans. 
 

 
 
 
 
 Search for non-thread-based models: which are 

the requirements for appropriate specification 
techniques? 
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Problems with Thread-Based Concurrency 

©  Ed. Lee, Berkeley 
Artemis Conference 
Graz, 2007 



 Finding appropriate model to capture an embedded 
system’s behavior is an important step 
o Model shapes the way we think of the system 
o For control-dominated and reactive systems 

• State-based models are appropriate, monitor control inputs and set 
control outputs 

o For data-dominated systems 
• Dataflow models are appropriate, transform input data streams to 

output data streams 
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The Bottom Line Is 

When specifying and designing Embedded Systems we 
should search for and use NON-thread-based, NON-
von-Neumann Models of Computation. 



 Model of Computation (MoC) 

 StateCharts 

 Data-Flow Models 
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Outline 
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Classical Automata 

• Moore-automata: 
Y =  (Z);   Z+ =  (X, Z) 

• Mealy-automata 
Y =  (X, Z);   Z+ =  (X, Z) 

Internal state Z input X output Y 

Next state Z+ computed by function  
Output computed by function  

Z0 Z1 

Z2 Z3 

e=1 

e=1 

e=1 

e=1 

0 1 

2 3 

clock 
Moore + Mealy 
automata=finite state 
machines (FSMs) 
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StateCharts 

Classical automata NOT useful for complex systems 
(complex graphs cannot be understood by humans).  
 
 Introduction of hierarchyStateCharts [Harel, 1987] 
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Introducing Hierarchy 

FSM will be in exactly one 
of the substates of S if S is 
active 
(either in A or in B or ..) 
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Definitions 
 Current states of FSMs are also called active states. 

 States which are not composed of other states are called 
basic states. 

 States containing other states are called super-states. 

 For each basic state s, the super-states containing s are 
called ancestor states 

 Super-states S are called OR-super-states, if exactly one of 
the sub-states of S is active whenever S is active. 

superstate 

substates 

ancestor state of E 



 Try to hide internal 
structure from 
outside world! 

o Default state 

 Filled circle 
indicates sub-state 
entered whenever 
super-state is 
entered. 

 Not a state by 
itself! 
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Default State Mechanism 



 For input m, S enters the state it was in before S was 
left (can be A, B, C, D, or E). If S is entered for the very 
first time, the default mechanism applies. 

 History and default mechanisms can be used 
hierarchically. 
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History Mechanism 

(behavior different from last slide) 
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Combining History and Default State 

same meaning 



 Convenient ways of describing concurrency are required. 

 AND-super-states: FSM is in all (immediate) sub-states of 
a super-state; Example: 
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Concurrency 



 Line-monitoring and key-monitoring are entered and 
left, when service switch is operated. 
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Entering and Leaving AND-super-states 
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Tree Representation of State Sets 



 Computation of state sets by traversing the tree from 
leaves to root: 
o  basic states: state set = state 
o OR-super-states: state set = union of children 
o AND-super-states: state set = Cartesian product of children 
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Computation of State Sets 



 In StateCharts, states are either 

o Basic states, or 

o AND-super-states, or 

o OR-super-states. 

 

 

 Sable state: there are no generated events and 
no enabled compound transition or static 
action 
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Types of States 



 Since time needs to be modeled in embedded 
systems, timers need to be modeled.  

 In StateCharts, special edges can be used for 
timeouts. 
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Timers 

If event a does not happen while the system is in 
the left state for 20 ms, a timeout will take place. 
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Using Timers in an Answering Machine 



 Besides states, arbitrary many other variables can 
be defined. This way, not all states of the system 
are modeled explicitly. 

 These variables can be changed as a result of a 
state transition (“action”). State transitions can 
be dependent on these variables (“condition” ). 
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Representation of Computations 



 Events: 
o Exist only until the next evaluation of the model 
o Can be either internally or externally generated 

 Conditions: 
o Refer to values of variables that keep their value until 

they are reassigned 
 Actions: 

o Can either be assignments for variables or creation of 
events 
 

 Example: 
o service-off [a <= 7] / service:=0 
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General Form of Edge Labels 

event [condition] / action 



 “event” can be composed of several events: 
o (e1 and e2) : event that corresponds to the 

simultaneous occurrence of e1 and e2. 
o (e1 or e2) : event that corresponds to the occurrence 

of either e1 or e2, or both. 
o (not e) : event that corresponds to the absence of 

event e. 
 

 “action” can also be composed: 
o (a1; a2) : actions a1 and a2 are executed in parallel. 

 

 All events, states and actions are globally visible. 
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Events and Actions 
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Example 



 How are edge labels evaluated? 
 

 Three phases: 

1. Evaluate effect of external changes on events and 
conditions 

2. Compute set of transitions to be made in the current 
step and right hand sides of assignments 

3. Activate transitions, assign new values to variables 
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The StateCharts Simulation Phases 

Separation into phases 2 and 3 guarantees 

deterministic and reproducible behavior 



 In phase 2, variables a and b are assigned to temporary 
variables. In phase 3, these are assigned to a and b. As 
a result, variables a and b are swapped. 

 In a single phase environment, executing the left state 
first would assign the old value of b (=0) to a and b. 
Executing the right state first would assign the old 
value of a (=1) to a and b. The execution would be non-
deterministic. 
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Example 



12/18/2013 Kai.Huang@tum 43 

Steps 

 Execution of a StateMate model consists of a 
sequence of (status, step) pairs 

Status 
phase 2 

Other implementations of 
StateCharts do not have these 3 

phases (and hence are 
nondeterministic)! 

Status= values of all variables + set of events + current time 

Step   = execution of the three phases (StateMate semantics) 



 In an actual clocked (synchronous) hardware 
system, both registers would be swapped as well. 

 Same separation into phases found in other 
languages as well, especially those that are 
intended to model hardware. 
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Reflects Model of Clocked Hardware 



 Unfortunately, there are several time-semantics 
of StateCharts in use. This is another possibility: 
o A step is executed in arbitrarily small time. 

o Internal (generated) events exist only within the next 
step. 

o Difference: External events can only be detected after 
a stable state has been reached. 
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More on Semantics of StateCharts 
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Examples 

state diagram: 
 

stable states 
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Example 



    Nondeterministic ! 
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Example 



 Pros: 

o Hierarchy allows arbitrary nesting of AND- and OR-
super states. 

o Semantics defined in a follow-up paper to original 
paper. 

o Large number of commercial simulation tools 
available (StateMate, StateFlow, BetterState, ...) 

o Available “back-ends“ translate StateCharts into C 
or VHDL, thus enabling software or hardware 
implementations. 
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Evaluation of StateCharts (1) 



 Cons: 

o Generated C programs frequently inefficient, 

o Not useful for distributed applications, 

o No description of non-functional behavior, 

o No object-orientation, 

o No description of structural hierarchy. 
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Evaluation of StateCharts (2) 
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To be continue  


