
Kai Huang

Specification and Modeling

 70M French phones/month, 60M Spain phones/month, …
 Cray XC30 series (64-bit Intel® Xeon® processor E5 family)
 The completed facility is expected to require 65 megawatts,

costing about $40 million per year

12/18/2013 Kai.Huang@tum 2

News

 Model of Computation (MoC)

 StateCharts

 Data-Flow Models

12/18/2013 Kai.Huang@tum 3

Outline

 The first step in designing Embedded System is to precisely
tell what the system behavior should be.

 This can be extremely difficult

o Increasing complexity of Embedded Systems
o Desired behavior often not fully understood in the beginning

 If something is wrong with the specification, then it will be
difficult to get the design right, potentially wasting a lot of
time.

 How can we (correctly and precisely) capture systems
behavior?

 12/18/2013 Kai.Huang@tum 4

Why Considering Specifications?

Specification: correct, clear and unambiguous
description of the required system behavior.

 Typically, we work with models of the system
under design at different levels of abstraction

 Levels of abstraction alleviate the complexity
problem of specification
o Levels of abstraction has be discussed previously

 Models allow to reason about the systems
under design, thereby identifying and
correcting flaws in the specification

 What is a model?

12/18/2013 Kai.Huang@tum 5

Model-Based Specifications

Modeling means forgetting

 What are the requirements for Model-based
Specification techniques for Embedded Systems?

12/18/2013 Kai.Huang@tum 6

Model

Definition: A model is a simplification of another entity,
which can be a physical thing or another model. The
model contains exactly those characteristics and
properties of the modeled entity that are relevant for a
given task. A model is minimal with respect to a task if it
does not contain any other characteristics than those
relevant for the task. [Jantsch, 2004]

 Modularity
o Systems specified as a composition of objects

 Represent hierarchy
o Humans not capable to understand systems

containing more than a few objects.

o Behavioral hierarchy
• Examples: statements->procedures->programs

o Structural hierarchy
• Examples: transistors->gates->processors->printed circuit

boards

 Concurrency, synchronization and communication

12/18/2013 Kai.Huang@tum 7

Requirements for Model & Spec. Techniques (1)

 Represent timing behavior/requirements

o Timing is essential for embedded systems!

o Four types of timing specs required [Burns, 1990]

12/18/2013 Kai.Huang@tum 8

Requirements for Model & Spec. Techniques (2)

t

? execution

t t

1. Measure elapsed time: Check, how
much time has elapsed since last call

3. Possibility to specify timeouts :
 Stay in a certain state a maximum time

2. Means for delaying processes 4. Methods for specifying deadlines

 Represent state-oriented behavior

o Required for reactive systems

 Represent dataflow-oriented behavior

o Components send streams of data to each other

 No obstacles for efficient implementation

12/18/2013 Kai.Huang@tum 9

Requirements for Model & Spec. Techniques (3)

 Components and an execution model for
computations for each component

 Communication model for exchange of
information between components
o Shared memory

oMessage passing

o …

12/18/2013 Kai.Huang@tum 10

Models of Computation (MoC): Definition

There is NO model of computation that meets all
specification requirements previously discussed
 using compromises

 An instruction set, a memory, and a program counter, is
all need to execute whatever application one can
dream of
o Basically sequential execution

 Von Neumann model of computation does not match
well with requirements for embedded system design
o This model does not consider timing requirements and

constraints, e.g.,
• Timing cannot be described (instructions cannot be delayed or

forced to execute at a specific time)
• Timing deadlines cannot be specified for instructions or sequence

of instructions
• Timeouts cannot be specified for sequence of instructions

o No way of concurrency

12/18/2013 Kai.Huang@tum 11

Von Neumann Model

 “... threads as a concurrency model are a poor match
for embedded systems. ... they work well only ... where
best-effort scheduling policies are sufficient.”

 Thread-based processing may access global variables

 We know from the theory of operating systems that
o Access to global variables might lead to race conditions

o To avoid these, we need to use mutual exclusion

o Mutual exclusion may lead to deadlocks

o Avoiding deadlocks is possible only if we accept
performance penalties

12/18/2013 Kai.Huang@tum 12

Thread-based Concurrency Models

Edward Lee: Absolutely Positively on
Time, IEEE Computer, July, 2005

 “The Observer pattern defines a one-to-many
dependency between a subject object and any
number of observer objects so that when the
subject object changes state, all its observer
objects are notified and updated automatically.”

12/18/2013 Kai.Huang@tum 13

An Example

Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns, Addision-Wesley, 1995

12/18/2013 Kai.Huang@tum 14

Observer Pattern in Java

Add observer listener
to data structure
myListeners

Changes subject state

Changes observer state

What happens in a multi-threaded context?

12/18/2013 Kai.Huang@tum 15

Observer Pattern with Mutexes

Resolves race condition between addListener and setValue

Javasoft recommends against this! What’s wrong with it?

12/18/2013 Kai.Huang@tum 16

Mutexes are Minefields

valueChanged() may attempt to acquire a lock on some other
(independent) object and stall. If the holder of that lock calls
addListener(): deadlock!

12/18/2013 Kai.Huang@tum 17

Simple observer pattern gets complicated

This still isn’t right.
What’s wrong with it?

while holding lock, make a
copy of listeners to avoid
race conditions

notify each listener outside
of the synchronized block to
avoid deadlock

12/18/2013 Kai.Huang@tum 18

Simple observer pattern: How to make it right?

Suppose two threads call setValue(). One of them will set the value
last, leaving that value in the object, but listeners may be notified in
the opposite order. Listeners may finally have different values.

12/18/2013 Kai.Huang@tum 19

A Replicable Simple Example

http://javaeesupportpatterns.blogspot.ca/2013/01/java-concurrency-hidden-thread-deadlocks.html
Another latest article:

 Nontrivial software written with threads,
semaphores, and mutexes is incomprehensible to
humans.

 Search for non-thread-based models: which are

the requirements for appropriate specification
techniques?

12/18/2013 Kai.Huang@tum 20

Problems with Thread-Based Concurrency

© Ed. Lee, Berkeley
Artemis Conference
Graz, 2007

 Finding appropriate model to capture an embedded
system’s behavior is an important step
o Model shapes the way we think of the system
o For control-dominated and reactive systems

• State-based models are appropriate, monitor control inputs and set
control outputs

o For data-dominated systems
• Dataflow models are appropriate, transform input data streams to

output data streams

12/18/2013 Kai.Huang@tum 21

The Bottom Line Is

When specifying and designing Embedded Systems we
should search for and use NON-thread-based, NON-
von-Neumann Models of Computation.

 Model of Computation (MoC)

 StateCharts

 Data-Flow Models

12/18/2013 Kai.Huang@tum 22

Outline

12/18/2013 Kai.Huang@tum 23

Classical Automata

• Moore-automata:
Y =  (Z); Z+ =  (X, Z)

• Mealy-automata
Y =  (X, Z); Z+ =  (X, Z)

Internal state Z input X output Y

Next state Z+ computed by function 
Output computed by function 

Z0 Z1

Z2 Z3

e=1

e=1

e=1

e=1

0 1

2 3

clock
Moore + Mealy
automata=finite state
machines (FSMs)

12/18/2013 Kai.Huang@tum 24

StateCharts

Classical automata NOT useful for complex systems
(complex graphs cannot be understood by humans).

 Introduction of hierarchyStateCharts [Harel, 1987]

12/18/2013 Kai.Huang@tum 25

Introducing Hierarchy

FSM will be in exactly one
of the substates of S if S is
active
(either in A or in B or ..)

12/18/2013 Kai.Huang@tum 26

Definitions
 Current states of FSMs are also called active states.

 States which are not composed of other states are called
basic states.

 States containing other states are called super-states.

 For each basic state s, the super-states containing s are
called ancestor states

 Super-states S are called OR-super-states, if exactly one of
the sub-states of S is active whenever S is active.

superstate

substates

ancestor state of E

 Try to hide internal
structure from
outside world!

o Default state

 Filled circle
indicates sub-state
entered whenever
super-state is
entered.

 Not a state by
itself!

12/18/2013 Kai.Huang@tum 27

Default State Mechanism

 For input m, S enters the state it was in before S was
left (can be A, B, C, D, or E). If S is entered for the very
first time, the default mechanism applies.

 History and default mechanisms can be used
hierarchically.

12/18/2013 Kai.Huang@tum 28

History Mechanism

(behavior different from last slide)

12/18/2013 Kai.Huang@tum 29

Combining History and Default State

same meaning

 Convenient ways of describing concurrency are required.

 AND-super-states: FSM is in all (immediate) sub-states of
a super-state; Example:

12/18/2013 Kai.Huang@tum 30

Concurrency

 Line-monitoring and key-monitoring are entered and
left, when service switch is operated.

12/18/2013 Kai.Huang@tum 31

Entering and Leaving AND-super-states

12/18/2013 Kai.Huang@tum 32

Tree Representation of State Sets

 Computation of state sets by traversing the tree from
leaves to root:
o basic states: state set = state
o OR-super-states: state set = union of children
o AND-super-states: state set = Cartesian product of children

12/18/2013 Kai.Huang@tum 33

Computation of State Sets

 In StateCharts, states are either

o Basic states, or

o AND-super-states, or

o OR-super-states.

 Sable state: there are no generated events and
no enabled compound transition or static
action

12/18/2013 Kai.Huang@tum 34

Types of States

 Since time needs to be modeled in embedded
systems, timers need to be modeled.

 In StateCharts, special edges can be used for
timeouts.

12/18/2013 Kai.Huang@tum 35

Timers

If event a does not happen while the system is in
the left state for 20 ms, a timeout will take place.

12/18/2013 Kai.Huang@tum 36

Using Timers in an Answering Machine

 Besides states, arbitrary many other variables can
be defined. This way, not all states of the system
are modeled explicitly.

 These variables can be changed as a result of a
state transition (“action”). State transitions can
be dependent on these variables (“condition”).

12/18/2013 Kai.Huang@tum 37

Representation of Computations

 Events:
o Exist only until the next evaluation of the model
o Can be either internally or externally generated

 Conditions:
o Refer to values of variables that keep their value until

they are reassigned
 Actions:

o Can either be assignments for variables or creation of
events

 Example:
o service-off [a <= 7] / service:=0

12/18/2013 Kai.Huang@tum 38

General Form of Edge Labels

event [condition] / action

 “event” can be composed of several events:
o (e1 and e2) : event that corresponds to the

simultaneous occurrence of e1 and e2.
o (e1 or e2) : event that corresponds to the occurrence

of either e1 or e2, or both.
o (not e) : event that corresponds to the absence of

event e.

 “action” can also be composed:
o (a1; a2) : actions a1 and a2 are executed in parallel.

 All events, states and actions are globally visible.

12/18/2013 Kai.Huang@tum 39

Events and Actions

12/18/2013 Kai.Huang@tum 40

Example

 How are edge labels evaluated?

 Three phases:

1. Evaluate effect of external changes on events and
conditions

2. Compute set of transitions to be made in the current
step and right hand sides of assignments

3. Activate transitions, assign new values to variables

12/18/2013 Kai.Huang@tum 41

The StateCharts Simulation Phases

Separation into phases 2 and 3 guarantees

deterministic and reproducible behavior

 In phase 2, variables a and b are assigned to temporary
variables. In phase 3, these are assigned to a and b. As
a result, variables a and b are swapped.

 In a single phase environment, executing the left state
first would assign the old value of b (=0) to a and b.
Executing the right state first would assign the old
value of a (=1) to a and b. The execution would be non-
deterministic.

12/18/2013 Kai.Huang@tum 42

Example

12/18/2013 Kai.Huang@tum 43

Steps

 Execution of a StateMate model consists of a
sequence of (status, step) pairs

Status
phase 2

Other implementations of
StateCharts do not have these 3

phases (and hence are
nondeterministic)!

Status= values of all variables + set of events + current time

Step = execution of the three phases (StateMate semantics)

 In an actual clocked (synchronous) hardware
system, both registers would be swapped as well.

 Same separation into phases found in other
languages as well, especially those that are
intended to model hardware.

12/18/2013 Kai.Huang@tum 44

Reflects Model of Clocked Hardware

 Unfortunately, there are several time-semantics
of StateCharts in use. This is another possibility:
o A step is executed in arbitrarily small time.

o Internal (generated) events exist only within the next
step.

o Difference: External events can only be detected after
a stable state has been reached.

12/18/2013 Kai.Huang@tum 45

More on Semantics of StateCharts

12/18/2013 Kai.Huang@tum 46

Examples

state diagram:

stable states

12/18/2013 Kai.Huang@tum 47

Example

 Nondeterministic !

12/18/2013 Kai.Huang@tum 48

Example

 Pros:

o Hierarchy allows arbitrary nesting of AND- and OR-
super states.

o Semantics defined in a follow-up paper to original
paper.

o Large number of commercial simulation tools
available (StateMate, StateFlow, BetterState, ...)

o Available “back-ends“ translate StateCharts into C
or VHDL, thus enabling software or hardware
implementations.

12/18/2013 Kai.Huang@tum 49

Evaluation of StateCharts (1)

 Cons:

o Generated C programs frequently inefficient,

o Not useful for distributed applications,

o No description of non-functional behavior,

o No object-orientation,

o No description of structural hierarchy.

12/18/2013 Kai.Huang@tum 50

Evaluation of StateCharts (2)

12/18/2013 Kai.Huang@tum 51

To be continue

