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News 



 Model of Computation (MoC) 

 StateCharts: Recap 

 Data-Flow Models 
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Outline 
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StateChart Recap 

B: OR-Super-State A: AND-Super-State D1: Basic State 

b: Event [D2]: Condition c: Action 
(event generation 
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StateChart  FSM 
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StateChart  FSM 
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StateChart  FSM 
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StateChart  FSM 
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StateChart  FSM 
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StateChart  FSM 
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StateChart  FSM 
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StateChart  FSM 
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StateChart  FSM 
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StateChart  FSM 
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StateChart  FSM 
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StateChart  FSM 
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StateChart  FSM 
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StateChart  FSM 



 Model of Computation (MoC) 

 StateCharts 

 Data-Flow Models 
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Outline 



 Processes communicating through FIFO 
buffers 
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Dataflow Language Model 

A B C 



 Drastically different way of looking at computation: 
o Imperative language style: program counter is king 

o Dataflow language: movement of data is the priority 

o Scheduling responsibility of the system, not the 
programmer 

 

 Basic characteristic: 
o All processes run “simultaneously” 

o Processes can be described with imperative code 

o Processes can only communicate through buffers 

o Sequence of read tokens is identical to the sequence of 
written tokens 
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Philosophy of Dataflow Languages 



 Appropriate for applications that deal with streams of 
data: 
o Fundamentally concurrent: maps easily to parallel 

hardware 
o Perfect fit for block-diagram specifications (control 

systems, signal processing) 
o Matches well current and future trend towards multimedia 

applications 
 

 Representation: 
o Host Language (process description), e.g. C, C++, Java, .... . 
o Coordination Language (network description), usually 

‘home made’, e.g. XML. 
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Dataflow Languages 
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Example: MPEG-2 Video Decoder 



 Proposed by Kahn in 1974 as a general-purpose 
scheme for parallel programming: 
o read: destructive and blocking (reading an empty 

channel blocks until data is available) 

o write: non-blocking 

o FIFO: infinite size 

 Unique attribute: determinate 
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Kahn Process Networks 

A B C 



 From Kahn’s original 1974 paper 

 

 

 

 

 

 

 

 Process alternately reads from u and v, prints the 
data value, and writes it to w 
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A Kahn Process 

What does this do? 



 From Kahn’s original 1974 paper 

 

 

 

 

 

 

 

 Process reads from u and alternately copies it to v 
and w 

 
11/12/2013 kai.huang@tum 27 

A Kahn Process 

What does this do? 



 From Kahn’s original 1974 paper 

 

 

 

 

 

 

 

 Process sends initial value, then passes through 
values. 
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A Kahn Process 

What does this do? 



 What does this do? 
o Prints an alternating sequence of 0’s and 1’s. 
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A Kahn Process Network 

Emits a 1 once and then copies input to output 
 

Emits a 0 once and then copies input to output 
 

h 
init = 1 

h 
init = 0 

f g 



 Random: 
o A system is random if the information known about the 

system and its inputs is not sufficient to determine its 
outputs. 

 Determinate: 
o Define the history of a channel to be the sequence of 

tokens that have been both written and read. A process 
network is said to be determinate if the histories of all 
channels depend only on the histories of the input 
channels. 

 Importance: 
o Functional behavior is independent of timing (scheduling, 

communication time, execution time of processes). 
o Separation of functional properties and timing. 
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Determinacy 



 Kahn Process: “monotonic mapping” of input sequence 
to output sequences: 
o Process uses prefix of input sequences to produce prefix of 

output sequences. In other words, if we consider two 
different scenarios, where the second one has just 
additional input tokens. Then the output sequence of the 
second scenario equals that of the first one, but with 
possible additional tokens appended. 

 Process will not wait forever before producing an 
output (i.e., it will not wait for completion of an infinite 
input sequence). 
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Determinacy 

F 



 Formal definition: 

o sequence (stream): 

o prefix ordering: 

o p-tuple of sequences: 

o ordered set of sequences: 

o process: 

o monotonic process: 
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Determinacy 

F 



 Why is a Kahn Process Network (consisting of 
monotonic processes) determinate? 
o A network of monotonic processes itself defines a 

monotonic process. 

o A monotonic process is clearly determinate. 

 Reasoning: 
o If I’m a process, I am only affected by the sequence of 

tokens on my inputs 

o I can’t tell whether they arrive early, late, or in what order 

o I will behave the same in any case 

o Thus, the sequence of tokens I put on my outputs is the 
same regardless of the timing of the tokens on my inputs 
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Proof of Determinism 



 There are several ways to introduce non-monotonic 
behavior: 
o Allow processes to test for emptiness 
o Allow more than one process to read from or to write to a 

channel 
o Allow processes to share a variable 

 Example of fair merge: 
o don't let any channel starve 
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Adding Non-Determinacy 
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Adding Non-Determinacy 



 Challenge is running processes without 
accumulating tokens and without producing a 
deadlock. 
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Scheduling Kahn Networks 

A 

B 

C 

Tokens will accumulate here 

Only consumes tokens from A 

Always emit tokens 



 Only run a process whose outputs are being 
actively solicited. 

 However... 
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Demand-driven Scheduling? 

Only consumes tokens from A 

Always consume tokens 

A 

B 

C 

accumulate here 

Always emit tokens 

D 



 Schedules a Kahn Process Network in bounded 
memory 

 if it is possible: 
o Start with a network with bounded buffer sizes and 

blocking write (can be transformed into a 
conventional KPN). 

o Use any scheduling technique to schedule the 
execution of processes that does not stall if there is 
still a process that is not blocked. 

o As long as the process networks runs without 
deadlock caused by blocking write -> continue. 

o If system deadlocks because of blocking write, 
increase size of smallest buffer and continue. 
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Tom Parks’ Algorithm 



 A given KPN can be changed such that buffer sizes are 
finite: 
o To every channel between two processes an additional (virtual) 

channel in the reverse direction is added. 
o If the buffer size is restricted to n, then this new virtual channel 

has n initial data. 
o Every write (read) of the original channel leads to a (read) write 

of the virtual channel. 
o Invariant: The sum of token in both channels is constant. 

 
 
 
 

o The resulting KPN has the same functional behavior but it may 
deadlock because of the finite buffer sizes 
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From Infinite to Finite Buffer Size 



 An example of a KPN that produces a deadlock 
caused by a finite buffer size (size(u) < 2): 
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Deadlock Example 



 The previous process network with finite 
buffer size can be converted into a KPN: 
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Example: Finite Size Buffers in KPN 



 Start with buffers of size 1. 
 Run A, B, C, D. 
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Parks’ Algorithm in Action 

Only consumes 
tokens from A 
 

A 

B 

C 

D 

C1 

C2 

C3 

A B C D 

C1 1 1 0 0 

C2 0 1 1 1 

C3 0 1 1 0 



 B blocked waiting for space in B->C buffer. 
 System will run indefinitely. 
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Parks’ Algorithm in Action 

Only consumes 
tokens from A 
 

A 

B 

C 

D 

C1 

C2 

C3 

A B C D A C A 

C1 1 1 0 0 1 0 … 

C2 0 1 1 1 1 1 … 

C3 0 1 1 0 0 0 … 



 Pro: 
o Their beauty is that the scheduling algorithm does not 

affect their functional behavior 
o Matches stream-based processing 
o Makes coarse grained parallelism explicit 
o Favors mapping to multi-processor and distributed 

platforms 
 

 Con: 
o Difficult to schedule because of need to balance relative 

process rates 
o System inherently gives the scheduler few hints about 

appropriate rates 
o Parks’ algorithm expensive and fussy to implement 
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Evaluation of Kahn Process Networks 



 Edward Lee and David Messerschmitt, Berkeley, 1987: 
o Restriction of Kahn Networks to allow compile-time 

scheduling. 

o Each process reads and writes a fixed number of tokens 
each time it fires; firing is an atomic process. 

 Example: DAT-to-CD rate converter (converts a 44.1 
kHz sampling rate to 48 kHz) 
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Synchronous Dataflow (SDF) 

( 44.1*2/1*2/3*8/7*5/7 = 48 ) 



 Schedule can be determined completely at 
compile time (before the system runs). 

 Two steps: 
1. Establish relative execution rates by solving a 

system of linear equations (balancing equations). 

2. Determine periodic schedule by simulating 
system for a single round (returns the number of 
tokens in each buffer to their initial state). 

 Result: the schedule can be executed 
repeatedly without accumulating tokens in 
buffers 
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SDF Scheduling 
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Balancing Equations 



 Main SDF scheduling theorem (Lee ‘87): 
o A connected SDF graph with n actors has a periodic 

schedule iff its topology matrix M has rank n-1 
o If M has rank n-1 then there exists a unique smallest 

positive integer solution q to M q = 0 

 Inconsistent systems only have the all-zeros solution 
 Disconnected systems have two- or higher-dimensional 

solutions 
 Example: 
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Solving the Balancing Equation 



 A consistent system with no schedule 
 Rates do not avoid deadlock 
 Example: deadlock in consistent system 

 
 
 

 Solution here: add an initial token (delay) on one 
of the arcs 
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Consistent Rates Not Enough 

A B 

A B 

Initially No Tokens 
a waits for b 
b waits for a 
Deadlock!!! 

Initially 1 Token on 
arc ab 
b can fire 

1 

1 1 

1 

1 

1 
1 

1 

1 1 



 Possible schedules: 
o (BBBCDDDDAA)* 

o (BDBDBCADDA)* 

o (BBDDBDDCAA)* 

o ... 

 

 Systems often have many possible schedules. 
How can we use this flexibility? 
o Reduced code size (loop structure, hierarchy) 

o Reduced buffer sizes 
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Determine Periodic Schedule 
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 Simple approach: 

 the schedule:  

 BBBCDDDDAA 

 would produce code 
without loops like 

  B; 
  B; 
  B; 
  C; 
  D; 
  D; 
  D; 
  D; 
  A; 
  A; 
 

 Obvious improvement: 
use loops 

 Rewrite the schedule in 
“looped” form: 

 (3 B) C (4 D) (2 A) 

 Generated code 
becomes 
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Code Generation 



 Find Single Appearance Schedule: 
o (3 B) C (4 D) (2 A) 

 Often possible to choose a looped schedule in which 
each block appears exactly once 

 Leads to efficient block-structured code 
o Only requires one copy of each block’s code 

 Does not always exist 

 Often requires more buffer space than other schedules 

 Generated program with efficient code size 
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Code Size optimization 



 Find Minimum Memory Schedules 
 Often increases code size (block-generated code) 
 Static scheduling makes it possible to exactly predict 

memory requirements 
 
 
 
 
 

 Simultaneously improving code size, memory 
requirements, sharing buffers, etc. remains open 
research problems 
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Buffer Size optimization 

A B C 
20 10 20 10 

Schedule  Total buffer sizes 

(1) ABCBCCC  50 tokens 

(2) A(2B)(4 C)  60 tokens 

(3) A(2(B (2C)))  40 tokens 

(4) A(2(BC))(2 C)  50 tokens 



 Pros: 

o Compile-time schedurability verificaiton 

 

 Cons: 

o Process semantics is too restricted 

 

o Lack of means to model and analyze Non-
funtional properties 

• Energy, WCET, reliability 
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Evaluation of SDF 



 Models of Computation describe system behavior 
o Conceptual notion, e.g., sequential execution, dataflow, FSM 

 Specification Languages capture Models of Computation 
o Concrete syntax (textual or graphical) form, e.g., C, C++, Java 

 Variety of languages can capture one model 
o E.g., C, C++, Java  sequential execution model 

 One language can capture variety of models 
o E.g., C++  sequential execution model, dataflow model, state 

machine model 

 Certain languages better at capturing certain model of computation 
o E.g., VHDL captures best the Discrete Event (DE) model 
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Specification Languages 
State 

machine 
Sequent 
program 

Data 
flow 

C C++ Java 

Do not confuse Specification Languages 
with Models of Computation!!! 


