
Kai Huang

Specification and Modeling (2)

11/12/2013 kai.huang@tum 2

News

 Model of Computation (MoC)

 StateCharts: Recap

 Data-Flow Models

11/12/2013 kai.huang@tum 3

Outline

11/12/2013 kai.huang@tum 4

StateChart Recap

B: OR-Super-State A: AND-Super-State D1: Basic State

b: Event [D2]: Condition c: Action
(event generation

11/12/2013 kai.huang@tum 5

StateChart  FSM

11/12/2013 kai.huang@tum 6

11/12/2013 kai.huang@tum 7

StateChart  FSM

11/12/2013 kai.huang@tum 8

StateChart  FSM

11/12/2013 kai.huang@tum 9

StateChart  FSM

11/12/2013 kai.huang@tum 10

StateChart  FSM

11/12/2013 kai.huang@tum 11

StateChart  FSM

11/12/2013 kai.huang@tum 12

StateChart  FSM

11/12/2013 kai.huang@tum 13

StateChart  FSM

11/12/2013 kai.huang@tum 14

StateChart  FSM

11/12/2013 kai.huang@tum 15

StateChart  FSM

11/12/2013 kai.huang@tum 16

StateChart  FSM

11/12/2013 kai.huang@tum 17

StateChart  FSM

11/12/2013 kai.huang@tum 18

StateChart  FSM

11/12/2013 kai.huang@tum 19

StateChart  FSM

 Model of Computation (MoC)

 StateCharts

 Data-Flow Models

11/12/2013 kai.huang@tum 20

Outline

 Processes communicating through FIFO
buffers

11/12/2013 kai.huang@tum 21

Dataflow Language Model

A B C

 Drastically different way of looking at computation:
o Imperative language style: program counter is king

o Dataflow language: movement of data is the priority

o Scheduling responsibility of the system, not the
programmer

 Basic characteristic:
o All processes run “simultaneously”

o Processes can be described with imperative code

o Processes can only communicate through buffers

o Sequence of read tokens is identical to the sequence of
written tokens

11/12/2013 kai.huang@tum 22

Philosophy of Dataflow Languages

 Appropriate for applications that deal with streams of
data:
o Fundamentally concurrent: maps easily to parallel

hardware
o Perfect fit for block-diagram specifications (control

systems, signal processing)
o Matches well current and future trend towards multimedia

applications

 Representation:
o Host Language (process description), e.g. C, C++, Java,
o Coordination Language (network description), usually

‘home made’, e.g. XML.

11/12/2013 kai.huang@tum 23

Dataflow Languages

11/12/2013 kai.huang@tum 24

Example: MPEG-2 Video Decoder

 Proposed by Kahn in 1974 as a general-purpose
scheme for parallel programming:
o read: destructive and blocking (reading an empty

channel blocks until data is available)

o write: non-blocking

o FIFO: infinite size

 Unique attribute: determinate

 11/12/2013 kai.huang@tum 25

Kahn Process Networks

A B C

 From Kahn’s original 1974 paper

 Process alternately reads from u and v, prints the
data value, and writes it to w

11/12/2013 kai.huang@tum 26

A Kahn Process

What does this do?

 From Kahn’s original 1974 paper

 Process reads from u and alternately copies it to v
and w

11/12/2013 kai.huang@tum 27

A Kahn Process

What does this do?

 From Kahn’s original 1974 paper

 Process sends initial value, then passes through
values.

11/12/2013 kai.huang@tum 28

A Kahn Process

What does this do?

 What does this do?
o Prints an alternating sequence of 0’s and 1’s.

11/12/2013 kai.huang@tum 29

A Kahn Process Network

Emits a 1 once and then copies input to output

Emits a 0 once and then copies input to output

h
init = 1

h
init = 0

f g

 Random:
o A system is random if the information known about the

system and its inputs is not sufficient to determine its
outputs.

 Determinate:
o Define the history of a channel to be the sequence of

tokens that have been both written and read. A process
network is said to be determinate if the histories of all
channels depend only on the histories of the input
channels.

 Importance:
o Functional behavior is independent of timing (scheduling,

communication time, execution time of processes).
o Separation of functional properties and timing.

11/12/2013 kai.huang@tum 30

Determinacy

 Kahn Process: “monotonic mapping” of input sequence
to output sequences:
o Process uses prefix of input sequences to produce prefix of

output sequences. In other words, if we consider two
different scenarios, where the second one has just
additional input tokens. Then the output sequence of the
second scenario equals that of the first one, but with
possible additional tokens appended.

 Process will not wait forever before producing an
output (i.e., it will not wait for completion of an infinite
input sequence).

11/12/2013 kai.huang@tum 31

Determinacy

F

 Formal definition:

o sequence (stream):

o prefix ordering:

o p-tuple of sequences:

o ordered set of sequences:

o process:

o monotonic process:

11/12/2013 kai.huang@tum 32

Determinacy

F

 Why is a Kahn Process Network (consisting of
monotonic processes) determinate?
o A network of monotonic processes itself defines a

monotonic process.

o A monotonic process is clearly determinate.

 Reasoning:
o If I’m a process, I am only affected by the sequence of

tokens on my inputs

o I can’t tell whether they arrive early, late, or in what order

o I will behave the same in any case

o Thus, the sequence of tokens I put on my outputs is the
same regardless of the timing of the tokens on my inputs

11/12/2013 kai.huang@tum 33

Proof of Determinism

 There are several ways to introduce non-monotonic
behavior:
o Allow processes to test for emptiness
o Allow more than one process to read from or to write to a

channel
o Allow processes to share a variable

 Example of fair merge:
o don't let any channel starve

11/12/2013 kai.huang@tum 34

Adding Non-Determinacy

11/12/2013 kai.huang@tum 35

Adding Non-Determinacy

 Challenge is running processes without
accumulating tokens and without producing a
deadlock.

11/12/2013 kai.huang@tum 36

Scheduling Kahn Networks

A

B

C

Tokens will accumulate here

Only consumes tokens from A

Always emit tokens

 Only run a process whose outputs are being
actively solicited.

 However...

11/12/2013 kai.huang@tum 37

Demand-driven Scheduling?

Only consumes tokens from A

Always consume tokens

A

B

C

accumulate here

Always emit tokens

D

 Schedules a Kahn Process Network in bounded
memory

 if it is possible:
o Start with a network with bounded buffer sizes and

blocking write (can be transformed into a
conventional KPN).

o Use any scheduling technique to schedule the
execution of processes that does not stall if there is
still a process that is not blocked.

o As long as the process networks runs without
deadlock caused by blocking write -> continue.

o If system deadlocks because of blocking write,
increase size of smallest buffer and continue.

11/12/2013 kai.huang@tum 38

Tom Parks’ Algorithm

 A given KPN can be changed such that buffer sizes are
finite:
o To every channel between two processes an additional (virtual)

channel in the reverse direction is added.
o If the buffer size is restricted to n, then this new virtual channel

has n initial data.
o Every write (read) of the original channel leads to a (read) write

of the virtual channel.
o Invariant: The sum of token in both channels is constant.

o The resulting KPN has the same functional behavior but it may
deadlock because of the finite buffer sizes

 11/12/2013 kai.huang@tum 39

From Infinite to Finite Buffer Size

 An example of a KPN that produces a deadlock
caused by a finite buffer size (size(u) < 2):

11/12/2013 kai.huang@tum 40

Deadlock Example

 The previous process network with finite
buffer size can be converted into a KPN:

11/12/2013 kai.huang@tum 41

Example: Finite Size Buffers in KPN

 Start with buffers of size 1.
 Run A, B, C, D.

11/12/2013 kai.huang@tum 42

Parks’ Algorithm in Action

Only consumes
tokens from A

A

B

C

D

C1

C2

C3

A B C D

C1 1 1 0 0

C2 0 1 1 1

C3 0 1 1 0

 B blocked waiting for space in B->C buffer.
 System will run indefinitely.

11/12/2013 kai.huang@tum 43

Parks’ Algorithm in Action

Only consumes
tokens from A

A

B

C

D

C1

C2

C3

A B C D A C A

C1 1 1 0 0 1 0 …

C2 0 1 1 1 1 1 …

C3 0 1 1 0 0 0 …

 Pro:
o Their beauty is that the scheduling algorithm does not

affect their functional behavior
o Matches stream-based processing
o Makes coarse grained parallelism explicit
o Favors mapping to multi-processor and distributed

platforms

 Con:
o Difficult to schedule because of need to balance relative

process rates
o System inherently gives the scheduler few hints about

appropriate rates
o Parks’ algorithm expensive and fussy to implement

11/12/2013 kai.huang@tum 44

Evaluation of Kahn Process Networks

 Edward Lee and David Messerschmitt, Berkeley, 1987:
o Restriction of Kahn Networks to allow compile-time

scheduling.

o Each process reads and writes a fixed number of tokens
each time it fires; firing is an atomic process.

 Example: DAT-to-CD rate converter (converts a 44.1
kHz sampling rate to 48 kHz)

11/12/2013 kai.huang@tum 45

Synchronous Dataflow (SDF)

(44.1*2/1*2/3*8/7*5/7 = 48)

 Schedule can be determined completely at
compile time (before the system runs).

 Two steps:
1. Establish relative execution rates by solving a

system of linear equations (balancing equations).

2. Determine periodic schedule by simulating
system for a single round (returns the number of
tokens in each buffer to their initial state).

 Result: the schedule can be executed
repeatedly without accumulating tokens in
buffers

 11/12/2013 kai.huang@tum 46

SDF Scheduling

11/12/2013 kai.huang@tum 47

Balancing Equations

 Main SDF scheduling theorem (Lee ‘87):
o A connected SDF graph with n actors has a periodic

schedule iff its topology matrix M has rank n-1
o If M has rank n-1 then there exists a unique smallest

positive integer solution q to M q = 0

 Inconsistent systems only have the all-zeros solution
 Disconnected systems have two- or higher-dimensional

solutions
 Example:

11/12/2013 kai.huang@tum 48

Solving the Balancing Equation

 A consistent system with no schedule
 Rates do not avoid deadlock
 Example: deadlock in consistent system

 Solution here: add an initial token (delay) on one
of the arcs

11/12/2013 kai.huang@tum 49

Consistent Rates Not Enough

A B

A B

Initially No Tokens
a waits for b
b waits for a
Deadlock!!!

Initially 1 Token on
arc ab
b can fire

1

1 1

1

1

1
1

1

1 1

 Possible schedules:
o (BBBCDDDDAA)*

o (BDBDBCADDA)*

o (BBDDBDDCAA)*

o ...

 Systems often have many possible schedules.
How can we use this flexibility?
o Reduced code size (loop structure, hierarchy)

o Reduced buffer sizes

 11/12/2013 kai.huang@tum 50

Determine Periodic Schedule

11/12/2013 kai.huang@tum 52

 Simple approach:

 the schedule:

 BBBCDDDDAA

 would produce code
without loops like

 B;
 B;
 B;
 C;
 D;
 D;
 D;
 D;
 A;
 A;

 Obvious improvement:
use loops

 Rewrite the schedule in
“looped” form:

 (3 B) C (4 D) (2 A)

 Generated code
becomes

11/12/2013 kai.huang@tum 52

Code Generation

 Find Single Appearance Schedule:
o (3 B) C (4 D) (2 A)

 Often possible to choose a looped schedule in which
each block appears exactly once

 Leads to efficient block-structured code
o Only requires one copy of each block’s code

 Does not always exist

 Often requires more buffer space than other schedules

 Generated program with efficient code size

11/12/2013 kai.huang@tum 53

Code Size optimization

 Find Minimum Memory Schedules
 Often increases code size (block-generated code)
 Static scheduling makes it possible to exactly predict

memory requirements

 Simultaneously improving code size, memory
requirements, sharing buffers, etc. remains open
research problems

11/12/2013 kai.huang@tum 54

Buffer Size optimization

A B C
20 10 20 10

Schedule Total buffer sizes

(1) ABCBCCC 50 tokens

(2) A(2B)(4 C) 60 tokens

(3) A(2(B (2C))) 40 tokens

(4) A(2(BC))(2 C) 50 tokens

 Pros:

o Compile-time schedurability verificaiton

 Cons:

o Process semantics is too restricted

o Lack of means to model and analyze Non-
funtional properties

• Energy, WCET, reliability

11/12/2013 kai.huang@tum 56

Evaluation of SDF

 Models of Computation describe system behavior
o Conceptual notion, e.g., sequential execution, dataflow, FSM

 Specification Languages capture Models of Computation
o Concrete syntax (textual or graphical) form, e.g., C, C++, Java

 Variety of languages can capture one model
o E.g., C, C++, Java  sequential execution model

 One language can capture variety of models
o E.g., C++  sequential execution model, dataflow model, state

machine model

 Certain languages better at capturing certain model of computation
o E.g., VHDL captures best the Discrete Event (DE) model

 11/12/2013 kai.huang@tum 57

Specification Languages
State

machine
Sequent
program

Data
flow

C C++ Java

Do not confuse Specification Languages
with Models of Computation!!!

