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The Hardware 

PS4 Xbox One 

CPU semi-custom x86 AMD APU 
28nm 8-core Jaguar CPU 

CPU frequency 1.6 GHz 1.75 GHz 

GPU 18 CUs:1152 shaders 
(800MHz) 

12 CUs:768 shader 
(853 MHz) 

Memory 8G 5500MHz DDR5 8G 2133MHz DDR3 

Mem Bandwidth 176GB/sec 68.3GB/sec 

Embedded SRAM N/A 32MB (204GB/sec) 

PS4 

Xbox One ↓ 
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Dataflow MoC Recap 

Kahn Process Network 

 

Synchronous DataFlow  
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Outline 



 Processor 

o Single-cycle datapath 

o Pipeline datapath 

o Processor types 

 Memory 
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Outline 
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Y-Chart  Methodology 
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Performance 
Numbers 

Performance 
Evaluation 

Architecture 
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Embedded System Hardware 

A/D converter 
Sample-and-hold 

Information 
processing 

 Embedded system hardware is frequently used in a loop 
(“hardware in a loop”): 

D/A converter 

Display 

Sensors Actuators Environment 

Embedded system 

This course 



 Since 1946 all computers have had 5 components 
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The Big Picture 

Control 

Datapath 

Memory 

Processor 

Input 

Output 

Input unit accepts information: 
•Human operators, 
•Electromechanical devices 
•Other computers 
 

Output unit sends  
results of processing: 
•To a monitor display, 
•To a printer 
 

Datapath: 
•the part of the central 
processing unit (CPU) 
that does the actual 
computations 

Control unit coordinates  
various actions: 
•Input, 
•Output 
•Processing 

 Stores  information: 
•Instructions, 
•Data 



 Combinational Elements 

o ALU, Adder 

o Immediate extender 

o Multiplexers 

 Storage Elements 

o Instruction memory 

o Data memory 

o PC register 

o Register file 

 Clocking methodology 

o Timing of reads and writes 
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Datapath Components  
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1. ALU is a digital circuit that performs 
Arithmetic (Add, Sub, . . .) and Logical (AND, 
OR, NOT) operations. 

2. John Von Neumann proposed the ALU in 
1945 when he was working on EDVAC. 

 

11/19/2013 kai.huang@tum 12 

ALU: Arithmetic Logic Unit 

1-Bit ALU 
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Single-Cycle Datapath (with Control Signal) 
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Memory 

 Address 

Data_in 

Data_out 
 32 

A 
L 
U 

ALU result 

 32 

 5  
 

Registers 

 RA 

RB 

BusA 

BusB 

RW BusW 

 32 

Address 

Instruction 

Instruction 
Memory 

P
C

 
0

0
 

 +1 

 30 

Rs 

 5 

Rd 

Imm26 

Rt 

m 
u 
x 

0 

1 
 5 

m 
u 
x 

0 

1 

m 
u 
x 

0 

1 
m 
u 
x 

0 

1 

 30 

 30 Jump or Branch Target Address 

 30 

Imm16 

Next 

PC 

zero 

ALU 
Ctrl 

ALUCtrl 

ALUOp 

func 

RegDst ALUSrc RegWrite 

J, Beq, Bne 

MemtoReg 

MemRead 

MemWrite 

ExtOp 

Main 
Control 

Op 



Register Transfer Level (RTL) 

 RTL is a description of data flow between 
registers 

 RTL gives a meaning to the instructions 

 All instructions are fetched from memory at 
address PC 

Instruction  RTL Description 
 ADD Reg(Rd) ← Reg(Rs) + Reg(Rt); PC ← PC + 4 
 SUB Reg(Rd) ← Reg(Rs) – Reg(Rt); PC ← PC + 4 
 ORI Reg(Rt) ← Reg(Rs) | zero_ext(Im16);  PC ← PC + 4 
 LW Reg(Rt) ← MEM[Reg(Rs) + sign_ext(Im16)];  PC ← PC + 4 
 SW MEM[Reg(Rs) + sign_ext(Im16)] ← Reg(Rt);  PC ← PC + 4 
 BEQ if (Reg(Rs) == Reg(Rt)) 
   PC ← PC + 4  + 4 × sign_extend(Im16) 
  else PC ← PC + 4 
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Instructions are Executed in Steps 
 R-type Fetch instruction: Instruction ← MEM[PC] 

  Fetch operands: data1 ← Reg(Rs), data2 ← Reg(Rt) 

  Execute operation: ALU_result ← func(data1, data2) 

  Write ALU result: Reg(Rd) ← ALU_result 

  Next PC address: PC ← PC + 4 

 I-type Fetch instruction: Instruction ← MEM[PC] 

  Fetch operands: data1 ← Reg(Rs), data2 ← Extend(imm16) 

  Execute operation: ALU_result ← op(data1, data2) 

  Write ALU result: Reg(Rt) ← ALU_result 

  Next PC address: PC ← PC + 4 

 BEQ Fetch instruction: Instruction ← MEM[PC] 

  Fetch operands: data1 ← Reg(Rs), data2 ← Reg(Rt) 

  Equality: zero ← subtract(data1, data2)  

  Branch: if (zero) PC ← PC + 4 + 4×sign_ext(imm16) 

   else PC ← PC + 4 
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Instruction Execution Examples 
 LW Fetch instruction: Instruction ← MEM[PC] 

  Fetch base register: base ← Reg(Rs) 

  Calculate address: address ← base + sign_extend(imm16) 

  Read memory: data ← MEM[address] 

  Write register Rt: Reg(Rt) ← data 

  Next PC address: PC ← PC + 4 

 SW Fetch instruction: Instruction ← MEM[PC] 

  Fetch registers: base ← Reg(Rs), data ← Reg(Rt) 

  Calculate address: address ← base + sign_extend(imm16) 

  Write memory: MEM[address] ← data 

  Next PC address: PC ← PC + 4 

 Jump Fetch instruction: Instruction ← MEM[PC] 

  Target PC address: target ← PC[31:28] , Imm26 ,  ‘00’ 

  Jump: PC ← target 

concatenation 
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lw Rt,C(Rs) 

sw Rt,C(Rs) 

j C 
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Execution of Load Instruction: lw Rt,C(Rs) 

ALUCtrl = ‘ADD’ to calculate data memory address 
as Reg(Rs) + sign-extend(Imm16) 

ALUSrc = ‘1’ selects extended immediate as 
second ALU input 

MemRead = ‘1’ to read data memory 
RegDst = ‘0’ selects Rt as 

destination register 

ExtOp = ‘sign’ to sign-extend 
Immmediate16 to 32 bits 

RegWrite = ‘1’ to write the memory data 
on BusW to register Rt 

MemtoReg = ‘1’ places the data read from 
memory on BusW 

Data 
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Execution of Store Instruction: sw Rt,C(Rs) 

ALUCtrl = ‘ADD’ to calculate data memory address 
as Reg(Rs) + sign-extend(Imm16) 

ALUSrc = ‘1’ to select the extended immediate as 
second ALU input 

MemWrite = ‘1’ to write data memory 
RegDst = ‘x’ because no 

destination register 

ExtOp = ‘sign’ to sign-extend 
Immmediate16 to 32 bits 

RegWrite = ‘0’ because no register is 
written by the store instruction 

MemtoReg = ‘x’ because we don’t care 
what data is placed on BusW 
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Execution of Jump Instruction: j C 
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jump target address 
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 Long cycle time 
o All instructions take as much time as the slowest 

 
 
 
 
 
 
 

 Alternative Solution: Multicycle implementation 
o Break down instruction execution into multiple cycles 
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Drawbacks of Single Cycle Processor 

Instruction Fetch Store ALU Memory Write 

Instruction Fetch Arithmetic Reg Read  ALU 

Instruction Fetch Branch 

Load Memory Read Instruction Fetch 

longest delay 

ALU Reg Read  

Reg Read  

Reg Read  ALU 

Instruction Fetch Jump Decode   

Reg Write  

Reg Write  
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Single-Cycle vs. Multicycle 

Clock 

  

Clock 

  

Instr 2 Instr 1 Instr 3 Instr 4 

3 cycles 3 cycles 4 cycles 5 cycles 

Time 
saved 
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Time 
needed 

Time 
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allotted 
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 Processor 

o Single-cycle datapath 

o Pipeline datapath 

o Processor types 

 Memory 

 I/O 
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Outline 



 Shown below is the single-cycle datapath 

 How to pipeline this single-cycle datapath? 

 Answer: Introduce registers at the end of each stage 
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Single-Cycle Datapath 
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 Pipeline registers, in green, separate each pipeline stage 
 Pipeline registers are labeled by the stages they separate 
 Is there a problem with the register destination address? 
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Pipelined Datapath 
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 Destination register number should come from MEM/WB 
o Along with the data during the written back stage 

 Destination register number is passed from ID to WB stage 
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Corrected Pipelined Datapath 

Rs 

Rt 

Imm26 

Instruction 
Memory 

Inc 

P
C

 
0

0
 

m 
u 
x 

0 

1 

Address 

Instruction 

Register 

File 
 
 

A 
L 
U m 

u 
x 

Data 
Memory 

 Address 

 Data_in 

m 
u 
x 

0 

1 

 B
u

sW
 

ALU result 

ID EX IF MEM WB 

zero 

IF/ID ID/EX EX/MEM 

MEM/WB 

Rd 

 R
W

 

Next 

PC 

m 
u 
x 

Ext 

Imm16 



 Multiple instruction execution over multiple clock cycles 
o Instructions are listed in execution order from top to bottom 

o Clock cycles move from left to right 

o Figure shows the use of resources at each stage and each cycle 
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Graphically Representing Pipelines 
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 Diagram shows: 
o Which instruction occupies what stage at each clock cycle 

 Instruction execution is pipelined over the 5 stages 
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Instruction–Time Diagram 
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Up to five instructions can be in 
execution during a single cycle 

ALU instructions skip 
the MEM stage. Store 
instructions skip the 

WB stage  



 Consider a 5-stage instruction execution in which … 
o Instruction fetch = ALU operation = Data memory access = 

200 ps 

o Register read = register write = 150 ps 

 What is the single-cycle non-pipelined time? 

 What is the pipelined cycle time? 

 What is the speedup factor for pipelined execution? 

 Solution 
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Single-Cycle vs Pipelined Performance 

Reg ALU MEM IF 

900 ps 

Reg 

Reg ALU MEM IF 

900 ps 

Reg 

Non-pipelined cycle = 200+150+200+200+150 = 900 ps 



 Pipelined cycle time = max(200, 150) = 200 ps 
 

 
 
 
 

 CPI for pipelined execution = 1 
o One instruction completes each cycle (ignoring pipeline fill) 

 Speedup of pipelined execution = 900 ps / 200 ps = 4.5 
o Instruction count and CPI are equal in both cases 

 Speedup factor is less than 5 (number of pipeline stage) 
o Because the pipeline stages are not balanced 
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Single-Cycle versus Pipelined – cont’d 

200 

IF Reg MEM ALU Reg 

IF Reg MEM Reg ALU 

IF Reg MEM ALU Reg 200 

200 200 200 200 200 



Single Cycle Multiple Cycle Pipeline 

Clock Cycle Time Long (Long enough for 
the slowest instruction)  

Short (long enough for 
the slowest instruction 
step) 

Short (long enough for 
the slowest pipeline 
stage) 

Cycle Per Instruction 1 clock cycle per 
instruction (by 
definition) 

Variable number of 
clock cycles per 
instruction 

Fixed number of clock 
cycles per instruction, 
one for each pipeline 
stage 

# instruction executing 
concurrently  

1 1 # pipeline stage 

Duplicate Hardware Yes, since we can use a 
functional unit (FU) for 
at most one subtask per 
instruction 

No, since the 
instruction generally is 
broken into single-FU 
steps 

Yes,  to avoid restriction 
on pipeline execution  

Extra Register No Yes, to hold results for 
the next step 

Yes, to provide results 
for the pipeline stage 

Performance Baseline Faster, but not too fast Fastest , if pipeline is 
balanced 
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Summary between Datapaths 



 Processor 

o Single-cycle datapath 

o Pipeline datapath 

o Processor types 

 Memory 

 I/O 
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Outline 



 High performance 
o Highly optimized circuits and technology 
o Use of parallelism 

• superscalar: dynamic scheduling of instructions 
• super-pipelining: instruction pipelining, branch prediction, 

speculation 

o complex memory hierarchy 

 Not suited for real-time applications 
o Execution times are highly unpredictable because of 

intensive resource sharing and dynamic decisions 

 Properties 
o Good average performance for large application mix 
o High power consumption 
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General Purpose Processors (GPP) 
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GPP + Memory (I): von Neumann Architecture 

CPU 

PC 

IR 

GPR 

Memory 
Data + Program 

address 

data 

1. PC := 200 
2. Fetch => IR := Mem[PC] 
3. Decode IR 
4. Execute 
5. PC := PC + 1 
6. goto 2 ADD a1,a2,aN 

 

1 
2 
3 

200 

N 
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GPP + Memory (II): Harvard Architecture 

CPU 

PC 

IR 

GPR 

Program 
Memory 

address 

data 

Data 
Memory 

address 

data 



 4-8Mbytes L3 Cache 

 4 cores, 8 threads 
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Intel Lynnfield (Core i5/i7) 



IOPB: Instruction side On chip Peripheral Bus 
IXCL_M: Instruction-side Xilinx Cache Link Master 
IXCL_S: Instruction-side Xilinx Cache Link Slave 
ILMB: Instruction side Local Mory Bus 
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Simple GPP: Xilinx MicroBlaze 

DOPB: Data side On chip Peripheral Bus 
DXCL_M: Data-side Xilinx Cache Link Master 
DXCL_S: Data-side Xilinx Cache Link Slave 
DLMB: Data side Local Memory Bus 
MFSL: Master Fast Simplex Link 
SFSL: Slave Fast Simplex Link 



 Complex instruction set CISC (e.g. x86) 
o Map complexity of common instructions directly in machine 

code 
o Complex instructions can consist of several simple instructions 
o Can lead to subtle timing issues 
o Used in general purpose computing 

 

 Reduced instruction set RISC (e.g. ARM – Acorn Risc 
Machine) 
o Only simple machine instructions; Compiler has to map high-

level language onto simple instructions 
o All instructions take the same time 
o Used in embedded systems (Real-time hardware, smart phones, 

…) 
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Embedded Processors – RISC vs. CISC 
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 Micro Controllers (MicroCtrl) 
o Used in Control Dominated Systems 

o Reactive systems with event driven behavior 

o Application examples: cars, consumer electronics (washing 
machines, dishwashers etc.) 

 Digital Signal Processors (DSPs) 
o Used in Data Dominated Systems 

o Streaming-oriented systems with mostly periodic behavior 

o Application examples: signal processing 

 Very Long Instruction Word Processors (VLIWs) 
o Used in Data Dominated Systems 

o Application examples: image processing 
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Application Specific Instruction Set Processors 



 Control-dominant applications 
o Supports process scheduling 

and synchronization 

o Preemption (interrupt), context 
switch 

o Short latency times 

 Low power consumption 

 Peripheral units often 
integrated 

 

 Suited for real-time 
applications 
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ASIP: Micro Controllers 

Philips 83 C552:  
8 bit-8051 based microcontroller 
 



 Optimized for data-flow  
applications 

 Suited for simple control flow 

 Parallel hardware units 

 Specialized instruction set 

 High data throughput 

 Zero-overhead loops 

 Specialized memory 

 

 Suited for real-time 
applications 
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ASIP: Digital Signal Processors 



 Key idea: detection of possible parallelism to be done 
by compiler, not by hardware at run-time (inefficient). 

 VLIW: parallel operations (instructions) encoded in one 
long word (instruction packet), each instruction 
controlling one functional unit. 

 VLIW processors are an example of the so called 
Explicit Parallelism Instruction Computers (EPIC) 
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Very Long Instruction Word Processors 



 5 issue slots (functional units FU), 
 therefore up to 5 instructions can be executed in parallel 
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Philips TriMedia VLIW CPU 



 Custom-designed circuits 
necessary 
o if ultimate speed or 
o energy efficiency is the goal 

and 
o large numbers can be sold. 

 Approach suffers from 
o long design times, 
o lack of flexibility (changing 

standards) 
o high costs, i.e., Millions of $ 

mask costs 
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Application Specific Integrated Circuits (ASICs) 



 Full custom chips (HW) may be too expensive, software (SW) too 
slow. 

 Combine the speed of HW with the flexibility of SW 
o HW with programmable functions and interconnect. 
o HW (Re-)Configurable at design-time or at run-time (dynamic 

reconfiguration) 

 Field Programmable Gate Arrays (FPGAs) 
o Currently the most sophisticated and used RPUs 
o Applications 

• Fast and very cheap prototyping of (MP-)SoCs 
• Encryption, 
• Fast “object recognition“ (medical and military) 
• Adapting mobile phones to different standards 

 Very popular devices from 
o XILINX (Virtex II(Pro), Virtex 4, Virtex 5, Virtex 6, Virtex 7) 
o Altera (Cyclone, Arria, Stratix)  
o Actel and others 
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Reconfigurable Processing Units (RPUs) 
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Floor-plan of VIRTEX II FPGAs 

 Configurable Logic Block (CLB) 
 Digital Clock Manager (DCM) 
 Input/Output Blocks (IOB) 
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System-on-Chip (SoC) 



 The main difference between general purpose 
highest volume microprocessors and embedded 
systems is specialization. 

 Specialization should respect flexibility 
o application domain specific systems shall cover a class 

of applications 
o some flexibility is required to account for late changes, 

debugging 

 System analysis required 
o identification of application properties which can be 

used for specialization 
o quantification of individual specialization effects 
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System Specialization 
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Why Implementation Alternatives? 

 Trade-off between Flexibility and 
Performance/Power Efficiency 



©  Hugo De Man, IMEC, 
Philips, 2007 

Energy Efficiency 
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