.

= TUTI
E Robotics and Embedded Systems

Technische Universitat Minchen

Embedded Hardware (1)

11/19/2013 kai.huang@tum

The Hardware &,

PS4->

£ - P < 1.',‘- 4 " b
o ‘ : ‘ ! AN & 2 y
¥ -
' |
-

¥l CPU semi-custom x86 AMD APU
| ‘ 28nm 8-core Jaguar CPU
@ CPU frequency 1.6 GHz 1.75 GHz
GPU 18 CUs:1152 shaders 12 CUs:768 shader
(800MHz) (853 MHz)
Memory 8G 5500MHz DDR5 8G 2133MHz DDR3
Mem Bandwidth 176GB/sec 68.3GB/sec
MD Embedded SRAM N/A 32MB (204GB/sec)

E'lj 11/19/2013 kai.huang@tum 3 m

SoC Components

15 special purpose processors Any DRAM data can be

o)
offload CPU & GPU coherent with CPU caches
¢:D{ PCle j E 68 GB/sec

CPUCache-Coherent 30 GB/sec pesk BW

coherent BW 4 x 64 bit
Memory Access
) —

| oows

[Audio Processors

Audio DMA

24

:[AV Out Rsz Cmpst

:u AV In

(video Encode

4

CPU, GPU, special processors,
and 10 share memory via host-
guest MMUs and synchronized

| ooks

LJRR» J0ICJ030
C:
<

(video Decode page tables iy
CNTR
(swizzle/Lz Encode
2GB
('swz LZiMUPG Dcd 109 GB/sec min PORS
204 GB/sec peak BW
(Swizzle Copy 4 x 256 bit read & write
(Swizzle Copy {} {} {} {;- A LN 2GB
NT V| DDR3
Graphics Core 8MB |8MB | 8MB | 8 MB

fa) XBOX

@ 11/19/2013 kai.huang@tum 4 m

Dataflow MoC Recap

Kahn Process Network Synchronous DataFlow
h 3 1
init=1 h2
4 2
6
g f e |54 f
1 1
h
init=0 31 M3

E'lj 11/19/2013 kai.huang@tum 5 m

Outline

" Processor

= Memory
= |/O

11/19/8813

kai.huang@tum

Outline

= Processor
o Single-cycle datapath
o Pipeline datapath
o Processor types

E'lj 11/19/2013 kai.huang@tum 7 m

iter

Arbl

Y-Chart Methodology

HW

CP Mem
s
P1| [P3) A |
W& o 1 [
0 e , I P5
CPU Bus o IP Bus
— g P2 P4
\2 |

r/
p
Architecture Applications
model = model

N\

Performance

N
Performance

11/19/2013 kai.huang@tum

v -t

Embedded System Hardware

Embedded system hardware is frequently used in a loop
(“hardware in a loop”):

This course

A/D converter Information
Sample-and-hold processing
| -

|
Sensors
% &

Embedded system

(& 11/19/2013 kai.huang@tum

The Big Picture

= Since 1946 all computers have had 5 components

Input unit accepts information:
eHuman operators,
eElectromechanical devices

Control unit coordinates

eOther computers

various actions:

eInput, Processor

eQutput

eProcessing Control
Datapath

Datapath:

Memory

Input

Output

ethe part of the central

processing unit (CPU)
that does the actual
computations

(& 11/19/2013

Stores information:

e|nstructions,
eData

kai.huang@tum

Output unit sends
results of processing:
*To a monitor display,
eTo a printer

10 N

Datapath Components

= Combinational Elements
o ALU, Adder

o Immediate extender

o Multiplexers

= Storage Elements

O

O

O

O

" Clocking methodology

o Timing of reads and writes

Instruction memory
Data memory

PC register
Register file

11/19/8813

0
16 3 m
u
b 4
1
ExtOp select
32
Instruction
32 32 32
Q wip| Address
Instruction
Memory
Registers
5 : 32
~>lpa File BusA s>
5
7=>| RB BUSB»
5
| RW BUSW
us

Cloc

kai.huang@tum

~

RegWrite f32

i

)8

32

—» zero

32
»ALU result

— overflow

/fALU control

Data
Memory

32

» Address
32

e g

Data_in

32

Data_out »

T

MemRead

™~

f

MemWrite

ALU: Arithmetic Logic Unit

1. ALU is a digital circuit that performs
Arithmetic (Add, Sub, .. .) and Logical (AND,
OR, NOT) operations.

2. John Von Neumann proposed the ALU in

L

1945 when he was working on EDVAC.

Operation
E /J\
= LA
> "I > Result
! &
b
H- 1-Bit ALU
11/19/2013 kai.huang@tum 12

e

<

Shift
Operation

Arithmetic

Operation

Operation

\

ultifunction ALU

(None =00

SLL=01
SRL=10
SRA=11

ADD =0

32 v

Shift Amount

>

” Isb 5

SUB=1

Logic Unit

AND =00

OR=01
NOR =10
XOR =11

11/19/8813

kai.huang@tum

SLT: ALU does a SUB
and check the sign and
overflow

ALU Result

\fz zero

ALU
Selection

Shift =00

SLT=01
Arith =10
Logic=11

overflow

\

13 N

Instruction
Memory

Instruction

Address

11/19/8813

32

Op

Rs

Rt

RegDst

—»(—~ Xe8o

Single-Cycle Datapath (with Control Signal)

30 Jump or Branch Target Address

<_
u J, Beq, Bne
Nl ALU result
\kro
RA BusA Data
. Memor 0
Registers @ A ¥ m |32
> L Address u
m Data_out 1
: Data_in 4
RW BusW 1
T I
RegWrite ExtOp ALUSrc ALUCtrl
func
I—
MemRead
/\\/ ALUOp MemWrite MemtoReg
Main I
Control /
kai.huang@tum 14

L

Register Transfer Level (RTL)

= RTL is a description of data flow between

registers

= RTL gives a meaning to the instructions

= All instructions are fetched from memory at
address PC

Instruction RTL Description

Reg(Rd) < Reg(Rs) + Reg(Rt);

Reg(Rd) < Reg(Rs)— Reg(Rt);

Reg(Rt) <& Reg(Rs) | zero_ext(Im16);
Reg(Rt) < MEMJ[Reg(Rs) + sign_ext(Im16)];
MEM[Reg(Rs) + sign_ext(Im16)] < Reg(Rt);

if (Reg(Rs) == Reg(Rt))

ADD
SUB
ORI
LW
SW
BEQ

else

11/19/8813

PC& PC+4 +4 xsign_extend(Im16)
PC<PC+4

kai.huang@tum

b

PC< PC+4
PC< PC+4
PC< PC+4
PC<PC+4
PC< PC+4

I

L

Instructions are Executed in Steps

R-type

|-type

BEQ

Fetch instruction:
Fetch operands:

Execute operation:

Write ALU result:
Next PC address:

Fetch instruction:
Fetch operands:

Execute operation:

Write ALU result:
Next PC address:

Fetch instruction:
Fetch operands:
Equality:

Branch:

11/19/8813

Instruction & MEM[PC]

datal < Reg(Rs), data2 < Reg(Rt)
ALU_result ¢ func(datal, data2)
Reg(Rd) ¢ ALU result

PC< PC+4

Instruction & MEM[PC]

datal < Reg(Rs), data2 & Extend(imm16)
ALU_result ¢ op(datal, data2)

Reg(Rt) < ALU result

PC< PC+4

Instruction & MEMI[PC]
datal < Reg(Rs), data2 & Reg(Rt)
zero & subtract(datal, data2)

if (zero) PC & PC + 4 + 4xsign_ext(imm16)
else PC<PC+4
kai.huang@tum 16

Instruction Execution Examples

= W
lw Rt,C(Rs)

= SW
sw Rt,C(Rs)

= Jump Fetch instruction:
jC Target PC address:
Jump:
11/19/2013

Fetch instruction:

Fetch base register:
Calculate address:

Read memory:
Write register Rt:
Next PC address:

Fetch instruction:
Fetch registers:

Calculate address:

Write memory:
Next PC address:

kai.huang@tum 17

Instruction & MEM[PC]

base & Reg(Rs)

address & base + sign_extend(imm16)
data &< MEM[address]

Reg(Rt) < data

PC< PC+4

Instruction & MEM[PC]

base & Reg(Rs), data < Reg(Rt)
address & base + sign_extend(imm16)
MEM[address] ¢ data

PC<PC+4

concatenation

Instruction < MEMI[PC] /
target < PC[31:28], Imm26, ‘00’
PC < target

ExtOp = ‘sign’ to sign-extend
Immmediatel6 to 32 bits

ExtOp =
sign

ALUSrc
=1

32

ALUCtrl
=ADD

MemRead

=1 =0

J ALU result l

MemWrite

Data
Memory

Address

Data_out
Data_in

Execution of Load Instruction: lw Rt,C(Rs)

MemtoReg
=1

Instruction
M RA BusA
30 emory .
S Instruction Registers
32 RB BusB
8) Address
o
RW BusW
Py RegDst RegWrite
RegDst = ‘0’ selects Rt as =0 -1
destination register

MemRead = ‘1’ to read data memory

ALUSrc = ‘1’ selects extended immediate as
second ALU input

MemtoReg = ‘1’ places the data read from
memory on BusW

ALUCtrl = ‘ADD’ to calculate data memory address
as Reg(Rs) + sign-extend(Imm16)

RegWrite = ‘1’ to write the memory data
on BusW to register Rt

11/19/2013 kai.huang@tum

18

I

Execution of Store Instruction: sw Rt,C(Rs)

ExtOp = ‘sign’ to sign-extend
Immmediatel6 to 32 bits

Memory

Address

Instruction

ALUSrc
=1

Instruction

RegDst = ‘x’ because no

destination register

RegDst
=X

BusA

RA

Registers

RB BusB

RW BusW

A4
CcCr>»

T

RegWrite
=0

ALUCtrl
=ADD

32

32

MemRead

=0 =1

J ALU result l

Data
Memory

Address

Data_out
Data_in

MemWrite

MemtoReg

=X

~ W

MemWrite = ‘1’ to write data memory

ALUSrc = ‘1’ to select the extended immediate as

second ALU input

MemtoReg = ‘x’ because we don’t care
what data is placed on BusW

ALUCtrl = ‘ADD’ to calculate data memory address
as Reg(Rs) + sign-extend(Imm16)

RegWrite = ‘0O’ because no register is
written by the store instruction

11/19/8813

kai.huang@tum

7

I

Execution of Jump Instruction: j C

30 Jump Target Address

Instruction
Memory

Instruction

Address

J =1 selects Imm26 as
jump target address

Upper 4 bits are from the
incremented PC

PCSrc = 1 to select
jump target address

11/19/8813

[RN

o
aED

Rs

~Nwv

Rt

RegDst
=X

=X

=X

=X

MemRead MemWrite
il =0 =0
<_
4_ MemtoReg
ALU result =X
~ Imm16
RA BusA \ Data
. Memor 0
Registers _>@ A y m|32
- > L Address » |2 /
BusB 0 x
m U Data_out| / 1
: Data_in
RW BusW 1
RegWrite
=0 ExtOp ALUSrc ALUCtrl J=1

MemRead, MemWrite & RegWrite are O

We don’t care about RegDst, ExtOp, ALUSrc,

ALUCtrl, and MemtoReg

kai.huang@tum

20

I

Drawbacks of Single Cycle Processor

" Long cycle time
o All instructions take as much time as the slowest

Arithmetic

Load

Store

Branch

Jump

= Alternative Solution: Multicycle implementation

Instruction Fetch

Reg Read

ALU

Reg Write

ongest delay

Vv

Instruction Fetch | Reg Read ALU Memory Read Reg Write
Instruction Fetch | Reg Read ALU Memory Write

Instruction Fetch | Reg Read ALU

Instruction Fetch Decode

o Break down instruction execution into multiple cycles

| 11/19/2013

kai.huang@tum

21

&

Single-Cycle vs. Multicycle

Clock

Time
needed

Time
allotted

Instr 1

Instr 2

Instr 3

Instr 4

Cloc kJ

Time
needed

3 cycles

5 cycles

3 cycles

4 cycles

Time
allotted

Instr 1

Instr 2

Instr 3

Instr 4

11/19/8813

kai.huang@tum

22

Time
saved

Outline

" Processor

o Pipeline datapath

E:j 11/19/2013 kai.huang@tum 23 m

Single-Cycle Datapath

= Shown below is the single-cycle datapath
= How to pipeline this single-cycle datapath?
Answer: Introduce registers at the end of each stage

IF = Instruction Fetch: ID =Decode and 1 EX=Executeand MEM = Memory E WB = Write
1 1 1
! Register Fetch ! Calculate Address ! Access ! Back
1 1
| : : | !
Inc I : g : :
! ! Next | ! !
1 1 1 1
8 1 Imm26 X PC : ALU result :
1 § 1
1'?1 Rs : zero E
> 1
ump § Address "| Register fmi Data |
x . S File \ A Memory
1 Instruction e
= > L . Address
Instruction I?l = @ U |
1 .
Memory u Data_in
y x /
1
1
1 T
1 1 1

(& 11/19/2013 kai.huang@tum 24 i

Pipelined Datapath

" Pipeline registers, in green, separate each pipeline stage
" Pipeline registers are labeled by the stages they separate
" |sthere a problem with the register destination address?

IF = Instruction Fetch : ID = Decode : EX = Execute : MEM = Memory ' WB

IF/IID ID/IEX EX/I\I/IEM E
Inc _L’ : > > Next : :

- : : : MEM/WB
§ i Imm26 > i PC i —E—
I'?'l E E Imm16 sero E |
u = Address : RS > . = | : AL resul 0 E
x ! Register ! A ! m !
Y | Instruction = E Rt »| File E @ > L E L Address 2 E
Instruction ! > > ! U ! Data 1 :
Memory : = 3| | . : Memory :
' 1 ‘ ' »| | f=pp|Data_in '
\ | Rd : | :
1 > 1 | 1
1] 1] 1] T

| 11/19/2013 kai.huang@tum 25

Corrected Pipelined Datapath

= Destination register number should come from MEM/WB
o Along with the data during the written back stage

= Destination register number is passed from ID to WB stage

IF : ID : EX : MEM WB

IF/ID ID/EX EX/MEM E
Inc —I—P i P | [Next : :

- : : : MEM/WB
§ i Imm26 > i PC i —i—
1(1)1 E E Imm16 zer0 E E
u & Address : e > : > | | —_ 0 |
x ! Register ! A ! ‘ m !
1 | Instruction = E Rt > File E @ > L E Address : E
Instruction : > > U : Data 1 |
Memory | ER- : l : Memory :
! 1 ' »| | jp|Data_in '
i | : 1!

Hng I N g gy

(& 11/19/2013 kai.huang@tum 26 i

<— Program Execution Order

Graphically Representing Pipelines

= Multiple instruction execution over multiple clock cycles
o Instructions are listed in execution order from top to bottom
o Clock cycles move from left to right
o Figure shows the use of resources at each stage and each cycle

1—Time (in cycles)— CC1 + CC2 + CC3 + CC4 1 CCH + CC6 + cCc7 + CCS—;>

e =
[t m
[
[

lw $6, 8($5)
add $1, $2, $3
ori $4, $3,7
sub $5, $2, $3
sw $2,10(%$3)

11/19/8813

i

e

|

kai.huang@tum

@.

Instruction—Time Diagram

= Diagram shows:

71D ofex BMEM
Inc H H
: Next | [+
! H MEW/W
B | i
9 o fems T [
i N f g ALU result 5
B gister 711 Rt |
nstrueton 1 | e | | : u
H H Lot x
Instruction ! ! u ! Data
" i :[: | e
4 i H Data,
I i i

o Which instruction occupies what stage at each clock cycle
" |nstruction execution is pipelined over the 5 stages

Up to five instructions can be in

ALU instructions skip

11/19/2013 kai.huang@tum

execution during a single cycle T the MEM stage. Store
| Y instructions skip the
g 1 WB stage
S Iw $7,8($3) IF | ID | EX |MEM| WB 7 :

/ |

S Iw $6,8($5) F | 1D | EX |MEM[ws |/ !
< 1
% ori $4,$3,7 F | D | EX | =" wB i
£ sub $5,$2,$3 F | D | Ex| - |ws| !
E sw $2,10($3) F | D | ex [MEM| L
l 'CC1 CC2 CC3 CC4 CCB CC6 CCT CC8 CC9 Time

28 N

Single-Cycle vs Pipelined Performance

= Consider a 5-stage instruction execution in which ...

o Instruction fetch = ALU operation = Data memory access =
200 ps

o Register read = register write = 150 ps
= What is the single-cycle non-pipelined time?
= What is the pipelined cycle time?
= What is the speedup factor for pipelined execution?

= Solution
Non-pipelined cycle = 200+150+200+200+150 = 900 ps

IF Reg ALU MEM Reg

< 900 ps > IF Reg ALU MEM Reg
< 900 ps

v

& 11/19/2013 kai.huang@tum 29 U

Single-Cycle versus Pipelined — cont’d
" Pipelined cycle time = max(200, 150) = 200 ps

IF Reg ALU MEM Reg
« 200 - |F Reg ALU MEM | Reg
<+ 200 —» IF Reg ALU MEM Reg

<+« 200 >« 200 >« 200 >« 200 >« 200 —»

= CPI for pipelined execution =1
o One instruction completes each cycle (ignoring pipeline fill)
= Speedup of pipelined execution =900 ps / 200 ps = 4.5
o Instruction count and CPI are equal in both cases

» Speedup factor is less than 5 (humber of pipeline stage)
o Because the pipeline stages are not balanced

(A 11/19/2013 kai.huang@tum 30

Summary between Datapaths
. |singleyde | MultipleCycle _|Pipeliie

Clock Cycle Time

Cycle Per Instruction

instruction executing
concurrently

Duplicate Hardware

Long (Long enough for
the slowest instruction)

1 clock cycle per
instruction (by
definition)

Yes, since we can use a
functional unit (FU) for

at most one subtask per

instruction
Extra Register No
Performance Baseline
I 11/19/2013

Short (long enough for
the slowest instruction
step)

Variable number of
clock cycles per
instruction

No, since the
instruction generally is
broken into single-FU
steps

Yes, to hold results for
the next step

Faster, but not too fast

kai.huang@tum

Short (long enough for
the slowest pipeline
stage)

Fixed number of clock
cycles per instruction,
one for each pipeline
stage

pipeline stage

Yes, to avoid restriction
on pipeline execution

Yes, to provide results
for the pipeline stage

Fastest , if pipeline is
balanced

31 N

Outline

" Processor

o Processor types

@ 11/19/2013 kai.huang@tum 32 T

N

General Purpose Processors (GPP)

" High performance
o Highly optimized circuits and technology

o Use of parallelism
e superscalar: dynamic scheduling of instructions

* super-pipelining: instruction pipelining, branch prediction,
speculation

o complex memory hierarchy

= Not suited for real-time applications

o Execution times are highly unpredictable because of
intensive resource sharing and dynamic decisions

= Properties
o Good average performance for large application mix
o High power consumption

ki 11/19/2013 kai.huang@tum 33 U

GPP + Memory (I): von Neumann Architecture

N

200

PC
address IR
Memory
Data + Program data CcPU
ADD al,a2,aN
GPR
11/19/2013 kai.huang@tum

o Ul WN B

. PC:=200

. Fetch => IR := Mem[P(]
. Decode IR

. Execute

.PC:=PC+1

. goto 2

34 N

GPP + Memory (ll): Harvard Architecture

address
Program PC
Memory data IR
CPU
address
Data
Memory data GPR

E'-j 11/19/2013 kai.huang@tum . m

Buffer Allocation
Register Rename

Instruction Queue |
critical fields of the uOps)

General Inst

Memory lns ruction \

(queucs register entrics |v1||' ney
Ids of the uOps for scheduling)

Floating Point
Renamed Register File
128 entries of 125 bit

uOp Schedulers
FP Move Schodu 3

(8x8 dependency matrix)

Parallel (Matrix) Sched
for the two double pumped ALU'S

General Floatin
Slow Integer Scheduler
(8xX dependency matrix)

Load / Store ulp S
(8x8 dependency matrix)

Load / Store Lincs
Collision History Table

Integer Execution Core ¥

(1) uOp Dispatch umil &
Dispatches (l[‘hlll]()l!\ cycle

(2) Integer Renamed Keg
I_‘ncnumul 32 bit + 6 status (1
12 read ports and six write ports

(3) Databus switch & By

from the Integer Rrg:l\h-n Fike
(4) Flags, Write Hach
(5) Double Pumped Al
(6) Double Pumped Al
(7) Load Address Generator Uni
(8) Store Address Generator Un
(9) Load Buffer (45 cotn

(10) Store Bufler (24 cntric

Intel Pentium 4 Northwood

Execution Pipeline Start

Rogrster Alias History Tables (
Register Alias Table

uOp Quen

Micro code Sequence
Micro code ROM & Fla

Instruction Trace Cache

Trace Cache
Fill Buller

Distributed Tag comparaic
24 bit virtual T

Trace Cache Acces
next Address Predict

Trace Cache Branch |
Table (BTB), 512 entnes

Return Stacks (2x 16 entnes
Trace Cache next [P's (Ix)

Miscellancous Tag Data

3 I Instruction Decoder
Hgya o Up 10 4 decoded ul

ﬂ"'“‘i"?ﬂ

L.2 Cache

| 256 1Byte- {

.
o - -

256 kByte -
L2 Cache
. Block

-

. e

e o

Hn[‘? il

Lall

I -

(1) ROB Reorder B
(12) B kByte Level | Data cacl

(13) Summed Address Ing
(14) Cache Line R\.nl \\xm Ix nsferbuf

(from max. one x86 instr/c
Instructions with more than fou
handied by Micro Sequencer

Trace Cache LRU tuis
Raw Instruction Bytes in
Data TLB, 64 entr

associntive, between thre

— lual ported (for lo ul nul stores)
"'W

Instruction Felc
from L2 cache and
Branch Prediction

Front End Brang
Tables (BTRB), shared, 409
entries in total

Instruction TLEB

lnll\¢ sociative for 4k a

pages, In \|ll|| addre

Out: Phys LllJAllll\\~\"‘|:
¢ level bits

Front Side Bus Intc
face, 400..800 MHz

four way set associative. 1R/IW 256 bit wide bus to and from 12 cache April 19,2003 www.chip-architect.com

I

11/19/2013 kai.huang@tum

Simple GPP: Xilinx MicroBlaze

Instruction-side

bus interface

Data-side
bus interface

/1
|::IOPB > N ALU
5 [+ Program |1 : —\|| ©
c? [N\—] Counter Special N\ Shift | &
(9]
IXCL_M < = ;;‘éf’s‘::fs |] | Barrel shit 2
IXCL_S] | muttiplier
T T "
Divider
SN
Bus , —/ B Bus
IF |, |n$BtrL;fCtl0n K {} {} IF
:l; uffer
ILMB
K] basfindion
Decode |
—N] Register File i
L1 32x32b
N
1

Optional MicroBlaze feature

K_DOPB >

IOPB: Instruction side On chip Peripheral Bus
IXCL_M: Instruction-side Xilinx Cache Link Master

IXCL_S: Instruction-side Xilinx Cache Link Slave

ILMB: Instruction side Local Mory Bus

11/19/8813

DOPB: Data side On chip Peripheral Bus
DXCL_M: Data-side Xilinx Cache Link Master
DXCL_S: Data-side Xilinx Cache Link Slave
DLMB: Data side Local Memory Bus

MFSL: Master Fast Simplex Link

SFSL: Slave Fast Simplex Link

kai.huang@tum

%

s

Embedded Processors — RISC vs. ISC

= Complex instruction set CISC (e.g. x86)

o Map complexity of common instructions directly in machine
code

o Complex instructions can consist of several simple instructions
o Can lead to subtle timing issues
o Used in general purpose computing

* Reduced instruction set RISC (e.g. ARM — Acorn Risc
Machine)

o Only simple machine instructions; Compiler has to map high-
level language onto simple instructions

o All instructions take the same time
o Used in embedded systems (Real-time hardware, smart phones,

)

(& 11/19/2013 kai.huang@tum 38 i

Application Specific Instruction Set Processors

= Micro Controllers (MicroCtrl)
o Used in Control Dominated Systems
o Reactive systems with event driven behavior

o Application examples: cars, consumer electronics (washing
machines, dishwashers etc.)

= Digital Signal Processors (DSPs)
o Used in Data Dominated Systems
o Streaming-oriented systems with mostly periodic behavior
o Application examples: signal processing
= Very Long Instruction Word Processors (VLIWSs)
o Used in Data Dominated Systems
o Application examples: image processing

(& 11/19/2013 kai.huang@tum 39 i

ASIP: Micro Controllers

Control-dominant applications

o Supports process scheduling
and synchronization

o Preemption (interrupt), context

switch

o Short latency times
Low power consumption
Peripheral units often

integrated

Suited for real-time
applications

11/19/8813

VIbPYY 4 v Y

¢ 48 08 88 ¢

processor 8K8 ROM
80CS51 (87C552 8KS8
15 - vector EoLle-
mterrupt 256 x 8 RAM
timer O (16 bit) A/DC
timer 1 (16 bit) 10 - bit
timer 2 PWM
(16 bit) UART
watchdog (T3) [°C

parallel ports 1 through 5

Philips 83 C552:

8 bit-8051 based microcontroller

kai.huang@tum

it v

I

ASIP: Digital Signal Processors

= Optimized for data-flow
applications

= Suited for simple control flow

= Parallel hardware units
= Specialized instruction set
= High data throughput

Figure 2-1. TMS320C62x/C67x Block Diagram

Program RAM/cache
32-bit address
256-bit data

Data RAM

32-bit address
8-, 16-, 32-bit data

EMIF 512K bits RAM 512K bits RAM
= /ero- head | - : U
ero-overnead 100ps 5 TR
. L] [] 3A2 \ 11
Specialized memory
Program fetch Control (four
|r)structranrq|srpatcrhﬂ reé’i’;{ec:s i chag{nel;
Instruction decode C|ontrol E[)ng
Data path 1 Data path 2 :gfi" ch‘énnel)
[o = e es
= Suited for real-time T T T T T (o]
. . [LT[S1[Mi[D1] | [L2[52IM2[02] | ierrupts || [EXB
applications - - o
Power management pont
11/19/2013 kai.huang@tum 41

JTAG test

Multichannel

¥ TN T1/EN) buffered

serial port

Multichannel

“"HT1/ET) buffered

serial port

S Timer
K
v

Timer

PLL clock
generator

I

Very Long Instruction Word Processors

= Key idea: detection of possible parallelism to be done
by compiler, not by hardware at run-time (inefficient).

= VLIW: parallel operations (instructions) encoded in one

long word (instruction packet), each instruction
controlling one functional unit.

= VLIW processors are an example of the so called
Explicit Parallelism Instruction Computers (EPIC)

-_

instruction packet

T

instruction 1

Instruction 2 iInstruction 3

iInstruction 4

y

¥

v

!

(& 11/19/2013

floating point | | integer integer memory
unit unit unit unit
kai.huang@tum 42

Philips TriMedia VLIW CPU

64-Dbit 32-bit
memory peripheral

bus blus multi-port 128 words x 64 bits register file

bypass network
data

— l\l\li‘—n» l‘l\-‘ L A AN\ | ‘\‘T l\l\l‘I‘

HHHH

exce tlons

instructio ‘—'—|—u—|—l—|—\
mmu VLIW instruction decode and launch
32 KB

= 5issue slots (functional units FU),
* therefore up to 5 instructions can be executed in parallel

(& 11/19/2013 kai.huang@tum 43 ninn

Application Specific Integrated Circuits (ASICs)

= Custom-designed circuits
necessary

o if ultimate speed or

o energy efficiency is the goal
and

o large numbers can be sold.

= Approach suffers from
o long design times,

o lack of flexibility (changing
standards)

o high costs, i.e., Millions of S
mask costs

(& 11/19/2013 kai.huang@tum A4 i

-

Reconfigurable Processing Units (RPUs)

= Full custom chips (HW) may be too expensive, software (SW) too
slow.
= Combine the speed of HW with the flexibility of SW
o HW with programmable functions and interconnect.

o HW (Re-)Configurable at design-time or at run-time (dynamic
reconfiguration)

" Field Programmable Gate Arrays (FPGAS)
o Currently the most sophisticated and used RPUs

o Applications
* Fast and very cheap prototyping of (MP-)SoCs
* Encryption,
* Fast “object recognition” (medical and military)
e Adapting mobile phones to different standards
= \ery popular devices from
o XILINX (Virtex ll(Pro), Virtex 4, Virtex 5, Virtex 6, Virtex 7)
o Altera (Cyclone, Arria, Stratix)

o Actel and others

(& 11/19/2013 kai.huang@tum 45 T

o -
=

Floor-plan of VIRTEX Il FPGAs

Digital clock manager /O Blocks

i < 1 R —

- — e o 1 —

P i —— - —

—]

—

—

—

=

QO Q Dl Dl || D Dl D=
g & S| (S|l |[9)¢ Sdliiedi=
- = | —
@ o =
0 0 - - —
[o ~ ~ B =) —
5 3 =S —
o | Rk | AT :‘
o)) O ~ T e —
[— ~— ~ =~ |
= | o= - ‘
Q Q e 74 N —
@) O i 1 —

Programmble |/Os

Block RAM Muttiplier
= Configurable Logic Block (CLB)

= Digital Clock Manager (DCM)
" |nput/Output Blocks (I0B)

(& 11/19/2013 kai.huang@tum 46 i

. n 4 v‘ Vﬁ
-

System-on-Chip (SoC)

SoC Components

15 special purpose processors cry] Any DRAM data can be
offload CPU & GPU } coherent with CPU caches
<:::D(Pole j}' 68 GB/sec
30 GB/sec peak BW
CPU-Cache-Coherent
(Audlc Processors M [- coherent BW 4 x 64 bit
y NS | [
(Audio DMA
K] ook
I 4 ooR3
AV Out Rsz Cmpst I/
L1
AV iIn _r\ ——
I_|/ 2GB
CPU, GPU, special processors,
(Yideo Fncode and 10 share memory via host- |\ c::b RRE
guest MMUs and synchronized I/
(Viieo Desods page tables DRAM
CNTR
Swizzle/LZ Encode] N
(v ALl N 2GB
(Swz LZ/MJPG Decd 109 GBfsec min r\\ NTV| DDR3
204 GB/sec peak BW V
(Swizzle Copy 4 x 256 bit read & write
E AN N V| DDR3
Graphics Core 8MB [8MB | 8MB | 8 MB V

fa) XBOX

(& 11/19/2013 kai.huang@tum 47 i

System Specialization

" The main difference between general purpose
highest volume microprocessors and embedded
systems is specialization.

" Specialization should respect flexibility

o application domain specific systems shall cover a class
of applications

o some flexibility is required to account for late changes,
debugging

= System analysis required

o identification of application properties which can be
used for specialization

o quantification of individual specialization effects

(& 11/19/2013 kai.huang@tum 48 ninn

Why Implementation Alternatives?

3 o Trade-off between Flexibility and
105 Performance/Power Efficiency
a 100 MIPS/mW
s
S 10%- 1-10 MIPS/mW
E 10° - Piéﬁ?&h} IRSTE;L
g CGRAS)
5] 10 MIPS/mW 1-5 MIPS/mW
i 102 510 MIPS/mW
S] 10 MIPS 0.1-1 MIPS/mW
&
101 .
Inflexible Flexible
Programmability
11/19/2013 kai.huang@tum 49 m

Energy Efficiency

1000 |
wo\Ne(POy
100 \(\e(e(\ ,»(P P -
B (\C\lo
10
.
& .
O ot .
O] 1 e
0.1
0.01 o O
_ - + ® ASIC x cell
- % FPGA o MPU
0 A DSP + RISC
0.001
& 3 3 3
» o)) o o
— 2 N N
FA 11/19/2013 kai.huang@tum

2010

© Hugo De Man, IMEC,

Philips, 2007

50

I

