
Kai Huang

Embedded Hardware (1)

News: PS4 and Xbox One are Coming

11/19/2013 kai.huang@tum 2

11/19/2013 kai.huang@tum 3

The Hardware

PS4 Xbox One

CPU semi-custom x86 AMD APU
28nm 8-core Jaguar CPU

CPU frequency 1.6 GHz 1.75 GHz

GPU 18 CUs:1152 shaders
(800MHz)

12 CUs:768 shader
(853 MHz)

Memory 8G 5500MHz DDR5 8G 2133MHz DDR3

Mem Bandwidth 176GB/sec 68.3GB/sec

Embedded SRAM N/A 32MB (204GB/sec)

PS4

Xbox One ↓

11/19/2013 kai.huang@tum 4

Dataflow MoC Recap

Kahn Process Network

Synchronous DataFlow

11/19/2013 kai.huang@tum 5

h
init = 1

h
init = 0

f g

h2

h1

f g

3

1

4

2 3

1

2

1

2 3

6

 Processor

 Memory

 I/O

11/19/2013 kai.huang@tum 6

Outline

 Processor

o Single-cycle datapath

o Pipeline datapath

o Processor types

 Memory

 I/O

11/19/2013 kai.huang@tum 7

Outline

11/19/2013 kai.huang@tum 8

Y-Chart Methodology

Mapping

Performance
Numbers

Performance
Evaluation

Architecture
model

Applications
model

11/19/2013 kai.huang@tum 9

Embedded System Hardware

A/D converter
Sample-and-hold

Information
processing

 Embedded system hardware is frequently used in a loop
(“hardware in a loop”):

D/A converter

Display

Sensors Actuators Environment

Embedded system

This course

 Since 1946 all computers have had 5 components

11/19/2013 kai.huang@tum 10

The Big Picture

Control

Datapath

Memory

Processor

Input

Output

Input unit accepts information:
•Human operators,
•Electromechanical devices
•Other computers

Output unit sends
results of processing:
•To a monitor display,
•To a printer

Datapath:
•the part of the central
processing unit (CPU)
that does the actual
computations

Control unit coordinates
various actions:
•Input,
•Output
•Processing

 Stores information:
•Instructions,
•Data

 Combinational Elements

o ALU, Adder

o Immediate extender

o Multiplexers

 Storage Elements

o Instruction memory

o Data memory

o PC register

o Register file

 Clocking methodology

o Timing of reads and writes

11/19/2013 kai.huang@tum 11

Datapath Components

Data
Memory

 Address

Data_in

Data_out

MemRead MemWrite

 32

 32

 32

 32

Address

Instruction

Instruction
Memory

 32

m
u
x

0

1

select

Extend
 32 16

ExtOp

P
C

 32 32

A
L
U

ALU control

ALU result

zero

 32

 32

 32

overflow

Registers
File

 RA

RB

BusA

RegWrite

BusB

RW

 5

 5

 5

 32

32

 32

BusW

Clock

1. ALU is a digital circuit that performs
Arithmetic (Add, Sub, . . .) and Logical (AND,
OR, NOT) operations.

2. John Von Neumann proposed the ALU in
1945 when he was working on EDVAC.

11/19/2013 kai.huang@tum 12

ALU: Arithmetic Logic Unit

1-Bit ALU

11/19/2013 kai.huang@tum 13

Multifunction ALU

0

1

2

3

0

1

2

3

Logic Unit

 2

AND = 00
OR = 01

NOR = 10
XOR = 11

Lo
gi

ca
l

O
p

er
at

io
n

Shifter

 2 None = 00
SLL = 01
SRL = 10
SRA = 11

Sh
if

t
O

p
er

at
io

n

A 32

 32
B

A
d
d
e
r

c0

 32

 32

ADD = 0
SUB = 1

A
ri

th
m

et
ic

O

p
er

at
io

n

Shift = 00
SLT = 01

Arith = 10
Logic = 11

ALU
Selection

 32

 2

Shift Amount

ALU Result

lsb 5

sign

zero overflow

SLT: ALU does a SUB
and check the sign and

overflow

11/19/2013 kai.huang@tum 14

Single-Cycle Datapath (with Control Signal)

PCSrc

Ext

Data
Memory

 Address

Data_in

Data_out
 32

A
L
U

ALU result

 32

 5

Registers

 RA

RB

BusA

BusB

RW BusW

 32

Address

Instruction

Instruction
Memory

P
C

0

0

 +1

 30

Rs

 5

Rd

Imm26

Rt

m
u
x

0

1
 5

m
u
x

0

1

m
u
x

0

1
m
u
x

0

1

 30

 30 Jump or Branch Target Address

 30

Imm16

Next

PC

zero

ALU
Ctrl

ALUCtrl

ALUOp

func

RegDst ALUSrc RegWrite

J, Beq, Bne

MemtoReg

MemRead

MemWrite

ExtOp

Main
Control

Op

Register Transfer Level (RTL)

 RTL is a description of data flow between
registers

 RTL gives a meaning to the instructions

 All instructions are fetched from memory at
address PC

Instruction RTL Description
 ADD Reg(Rd) ← Reg(Rs) + Reg(Rt); PC ← PC + 4
 SUB Reg(Rd) ← Reg(Rs) – Reg(Rt); PC ← PC + 4
 ORI Reg(Rt) ← Reg(Rs) | zero_ext(Im16); PC ← PC + 4
 LW Reg(Rt) ← MEM[Reg(Rs) + sign_ext(Im16)]; PC ← PC + 4
 SW MEM[Reg(Rs) + sign_ext(Im16)] ← Reg(Rt); PC ← PC + 4
 BEQ if (Reg(Rs) == Reg(Rt))
 PC ← PC + 4 + 4 × sign_extend(Im16)
 else PC ← PC + 4

11/19/2013 15 kai.huang@tum

Instructions are Executed in Steps
 R-type Fetch instruction: Instruction ← MEM[PC]

 Fetch operands: data1 ← Reg(Rs), data2 ← Reg(Rt)

 Execute operation: ALU_result ← func(data1, data2)

 Write ALU result: Reg(Rd) ← ALU_result

 Next PC address: PC ← PC + 4

 I-type Fetch instruction: Instruction ← MEM[PC]

 Fetch operands: data1 ← Reg(Rs), data2 ← Extend(imm16)

 Execute operation: ALU_result ← op(data1, data2)

 Write ALU result: Reg(Rt) ← ALU_result

 Next PC address: PC ← PC + 4

 BEQ Fetch instruction: Instruction ← MEM[PC]

 Fetch operands: data1 ← Reg(Rs), data2 ← Reg(Rt)

 Equality: zero ← subtract(data1, data2)

 Branch: if (zero) PC ← PC + 4 + 4×sign_ext(imm16)

 else PC ← PC + 4

11/19/2013 16 kai.huang@tum

Instruction Execution Examples
 LW Fetch instruction: Instruction ← MEM[PC]

 Fetch base register: base ← Reg(Rs)

 Calculate address: address ← base + sign_extend(imm16)

 Read memory: data ← MEM[address]

 Write register Rt: Reg(Rt) ← data

 Next PC address: PC ← PC + 4

 SW Fetch instruction: Instruction ← MEM[PC]

 Fetch registers: base ← Reg(Rs), data ← Reg(Rt)

 Calculate address: address ← base + sign_extend(imm16)

 Write memory: MEM[address] ← data

 Next PC address: PC ← PC + 4

 Jump Fetch instruction: Instruction ← MEM[PC]

 Target PC address: target ← PC[31:28] , Imm26 , ‘00’

 Jump: PC ← target

concatenation

11/19/2013 17 kai.huang@tum

lw Rt,C(Rs)

sw Rt,C(Rs)

j C

11/19/2013 kai.huang@tum 18

Execution of Load Instruction: lw Rt,C(Rs)

ALUCtrl = ‘ADD’ to calculate data memory address
as Reg(Rs) + sign-extend(Imm16)

ALUSrc = ‘1’ selects extended immediate as
second ALU input

MemRead = ‘1’ to read data memory
RegDst = ‘0’ selects Rt as

destination register

ExtOp = ‘sign’ to sign-extend
Immmediate16 to 32 bits

RegWrite = ‘1’ to write the memory data
on BusW to register Rt

MemtoReg = ‘1’ places the data read from
memory on BusW

Data
Memory

 Address

Data_in

Data_out

 32

 32

A
L
U

ALUCtrl
= ADD

ALU result

 32

 32

Registers

 RA

RB

BusA

RegWrite
= 1

BusB

RW

 5

BusW

 32

Address

Instruction

Instruction
Memory

 32

 30

P
C

0

0

 +1

 30

Rs

 5

Rd

Extender

ExtOp =
sign

Imm16

Rt

m
u
x

0

1
 5

m
u
x

0

1

m
u
x

0

1

 32

MemRead
= 1

MemWrite
= 0

RegDst
= 0

ALUSrc
= 1

MemtoReg
= 1

 32

11/19/2013 kai.huang@tum 19

Execution of Store Instruction: sw Rt,C(Rs)

ALUCtrl = ‘ADD’ to calculate data memory address
as Reg(Rs) + sign-extend(Imm16)

ALUSrc = ‘1’ to select the extended immediate as
second ALU input

MemWrite = ‘1’ to write data memory
RegDst = ‘x’ because no

destination register

ExtOp = ‘sign’ to sign-extend
Immmediate16 to 32 bits

RegWrite = ‘0’ because no register is
written by the store instruction

MemtoReg = ‘x’ because we don’t care
what data is placed on BusW

Data
Memory

 Address

Data_in

Data_out

 32

 32

 32

A
L
U

ALUCtrl
= ADD

ALU result

 32

 32

Registers

 RA

RB

BusA

RegWrite
= 0

BusB

RW

 5

BusW

 32

Address

Instruction

Instruction
Memory

 32

 30

P
C

0

0

 +1

 30

Rs

 5

Rd

Extender

ExtOp =
sign

Imm16

Rt

m
u
x

0

1
 5

RegDst
= x

m
u
x

0

1

m
u
x

0

1

 32

MemRead
= 0

MemWrite
= 1

MemtoReg
= x

ALUSrc
= 1

11/19/2013 kai.huang@tum 20

Execution of Jump Instruction: j C

Ext

Data
Memory

 Address

Data_in

Data_out
 32

ALU result

 32

 5

Registers

 RA

RB

BusA

BusB

RW BusW

 32

Address

Instruction

Instruction
Memory

P
C

0

0
 30

Rs

 5

Rd

Imm26

Rt

m
u
x

0

1
 5

m
u
x

0

1

m
u
x

0

1
m
u
x

0

1

 30

 30 Jump Target Address

 30

Imm16

Next

PC

RegWrite
= 0

MemRead
= 0

MemWrite
= 0

J = 1

RegDst
= x ALUCtrl

= x
ALUSrc

= x

MemtoReg
= x

ExtOp
= x

PCSrc
= 1 +1 zero

A
L
U

Upper 4 bits are from the
incremented PC

We don’t care about RegDst, ExtOp, ALUSrc,
ALUCtrl, and MemtoReg

MemRead, MemWrite & RegWrite are 0

J = 1 selects Imm26 as
jump target address

PCSrc = 1 to select
jump target address

 Long cycle time
o All instructions take as much time as the slowest

 Alternative Solution: Multicycle implementation
o Break down instruction execution into multiple cycles

11/19/2013 kai.huang@tum 21

Drawbacks of Single Cycle Processor

Instruction Fetch Store ALU Memory Write

Instruction Fetch Arithmetic Reg Read ALU

Instruction Fetch Branch

Load Memory Read Instruction Fetch

longest delay

ALU Reg Read

Reg Read

Reg Read ALU

Instruction Fetch Jump Decode

Reg Write

Reg Write

11/19/2013 kai.huang@tum 22

Single-Cycle vs. Multicycle

Clock

Clock

Instr 2 Instr 1 Instr 3 Instr 4

3 cycles 3 cycles 4 cycles 5 cycles

Time
saved

Instr 1 Instr 4 Instr 3 Instr 2

Time
needed

Time
needed

Time
allotted

Time
allotted

 Processor

o Single-cycle datapath

o Pipeline datapath

o Processor types

 Memory

 I/O

11/19/2013 kai.huang@tum 23

Outline

 Shown below is the single-cycle datapath

 How to pipeline this single-cycle datapath?

 Answer: Introduce registers at the end of each stage

11/19/2013 kai.huang@tum 24

Single-Cycle Datapath

Imm26

Rs

Rt

Instruction
Memory

Inc

P
C

0

0

m
u
x

0

1

Address

Instruction
A
L
U m

u
x

0

1

Data
Memory

 Address

 Data_in

m
u
x

0

1

ALU result

zero

ID = Decode and
Register Fetch

EX = Execute and
Calculate Address

IF = Instruction Fetch MEM = Memory
Access

WB = Write
Back

Rd

m
u
x

0

1

Register

File

B
u

sW

R
W

Next

PC

Ext

Imm16

 Pipeline registers, in green, separate each pipeline stage
 Pipeline registers are labeled by the stages they separate
 Is there a problem with the register destination address?

11/19/2013 kai.huang@tum 25

Pipelined Datapath

Rs

Rt

Imm26

Instruction
Memory

Inc

P
C

0

0

m
u
x

0

1

Address

Instruction

Register

File

A
L
U m

u
x

Data
Memory

 Address

 Data_in

m
u
x

0

1

 B
u

sW

ALU result

ID = Decode EX = Execute IF = Instruction Fetch MEM = Memory WB

zero

IF/ID ID/EX EX/MEM

MEM/WB

Rd

 R
W

Next

PC

m
u
x

Ext

Imm16

 Destination register number should come from MEM/WB
o Along with the data during the written back stage

 Destination register number is passed from ID to WB stage

11/19/2013 kai.huang@tum 26

Corrected Pipelined Datapath

Rs

Rt

Imm26

Instruction
Memory

Inc

P
C

0

0

m
u
x

0

1

Address

Instruction

Register

File

A
L
U m

u
x

Data
Memory

 Address

 Data_in

m
u
x

0

1

 B
u

sW

ALU result

ID EX IF MEM WB

zero

IF/ID ID/EX EX/MEM

MEM/WB

Rd

 R
W

Next

PC

m
u
x

Ext

Imm16

 Multiple instruction execution over multiple clock cycles
o Instructions are listed in execution order from top to bottom

o Clock cycles move from left to right

o Figure shows the use of resources at each stage and each cycle

11/19/2013 kai.huang@tum 27

Graphically Representing Pipelines

lw $6, 8($5) IM

CC1 Time (in cycles)

Pr
og

ra
m

 E
x
e
cu

ti
on

 O
rd

e
r

add $1, $2, $3

CC2

Reg

IM

ori $4, $3, 7

ALU

CC3

Reg

IM

sub $5, $2, $3

CC4

DM

ALU

Reg

IM

sw $2, 10($3)

CC5

Reg

DM

ALU

Reg

IM

CC7

Reg

DM

ALU

CC6

Reg

DM

ALU

Reg

CC8

Reg

DM

 Diagram shows:
o Which instruction occupies what stage at each clock cycle

 Instruction execution is pipelined over the 5 stages

11/19/2013 kai.huang@tum 28

Instruction–Time Diagram

IF

WB

–

EX

ID

WB

–

EX

WB

MEM –

ID

IF

EX

ID

IF

Time CC1 CC4 CC5 CC6 CC7 CC8 CC9 CC2 CC3

MEM

EX

ID

IF

WB

MEM

EX

ID

IF

lw $7, 8($3)

lw $6, 8($5)

ori $4, $3, 7

sub $5, $2, $3

sw $2, 10($3) In
st

ru
ct

io
n

O
rd

e
r

Up to five instructions can be in
execution during a single cycle

ALU instructions skip
the MEM stage. Store
instructions skip the

WB stage

 Consider a 5-stage instruction execution in which …
o Instruction fetch = ALU operation = Data memory access =

200 ps

o Register read = register write = 150 ps

 What is the single-cycle non-pipelined time?

 What is the pipelined cycle time?

 What is the speedup factor for pipelined execution?

 Solution

11/19/2013 kai.huang@tum 29

Single-Cycle vs Pipelined Performance

Reg ALU MEM IF

900 ps

Reg

Reg ALU MEM IF

900 ps

Reg

Non-pipelined cycle = 200+150+200+200+150 = 900 ps

 Pipelined cycle time = max(200, 150) = 200 ps

 CPI for pipelined execution = 1
o One instruction completes each cycle (ignoring pipeline fill)

 Speedup of pipelined execution = 900 ps / 200 ps = 4.5
o Instruction count and CPI are equal in both cases

 Speedup factor is less than 5 (number of pipeline stage)
o Because the pipeline stages are not balanced

11/19/2013 kai.huang@tum 30

Single-Cycle versus Pipelined – cont’d

200

IF Reg MEM ALU Reg

IF Reg MEM Reg ALU

IF Reg MEM ALU Reg 200

200 200 200 200 200

Single Cycle Multiple Cycle Pipeline

Clock Cycle Time Long (Long enough for
the slowest instruction)

Short (long enough for
the slowest instruction
step)

Short (long enough for
the slowest pipeline
stage)

Cycle Per Instruction 1 clock cycle per
instruction (by
definition)

Variable number of
clock cycles per
instruction

Fixed number of clock
cycles per instruction,
one for each pipeline
stage

instruction executing
concurrently

1 1 # pipeline stage

Duplicate Hardware Yes, since we can use a
functional unit (FU) for
at most one subtask per
instruction

No, since the
instruction generally is
broken into single-FU
steps

Yes, to avoid restriction
on pipeline execution

Extra Register No Yes, to hold results for
the next step

Yes, to provide results
for the pipeline stage

Performance Baseline Faster, but not too fast Fastest , if pipeline is
balanced

11/19/2013 kai.huang@tum 31

Summary between Datapaths

 Processor

o Single-cycle datapath

o Pipeline datapath

o Processor types

 Memory

 I/O

11/19/2013 kai.huang@tum 32

Outline

 High performance
o Highly optimized circuits and technology
o Use of parallelism

• superscalar: dynamic scheduling of instructions
• super-pipelining: instruction pipelining, branch prediction,

speculation

o complex memory hierarchy

 Not suited for real-time applications
o Execution times are highly unpredictable because of

intensive resource sharing and dynamic decisions

 Properties
o Good average performance for large application mix
o High power consumption

11/19/2013 kai.huang@tum 33

General Purpose Processors (GPP)

11/19/2013 kai.huang@tum 34

GPP + Memory (I): von Neumann Architecture

CPU

PC

IR

GPR

Memory
Data + Program

address

data

1. PC := 200
2. Fetch => IR := Mem[PC]
3. Decode IR
4. Execute
5. PC := PC + 1
6. goto 2 ADD a1,a2,aN

1
2
3

200

N

11/19/2013 kai.huang@tum 35

GPP + Memory (II): Harvard Architecture

CPU

PC

IR

GPR

Program
Memory

address

data

Data
Memory

address

data

 4-8Mbytes L3 Cache

 4 cores, 8 threads

11/19/2013 kai.huang@tum 36

Intel Lynnfield (Core i5/i7)

IOPB: Instruction side On chip Peripheral Bus
IXCL_M: Instruction-side Xilinx Cache Link Master
IXCL_S: Instruction-side Xilinx Cache Link Slave
ILMB: Instruction side Local Mory Bus

11/19/2013 kai.huang@tum 37

Simple GPP: Xilinx MicroBlaze

DOPB: Data side On chip Peripheral Bus
DXCL_M: Data-side Xilinx Cache Link Master
DXCL_S: Data-side Xilinx Cache Link Slave
DLMB: Data side Local Memory Bus
MFSL: Master Fast Simplex Link
SFSL: Slave Fast Simplex Link

 Complex instruction set CISC (e.g. x86)
o Map complexity of common instructions directly in machine

code
o Complex instructions can consist of several simple instructions
o Can lead to subtle timing issues
o Used in general purpose computing

 Reduced instruction set RISC (e.g. ARM – Acorn Risc
Machine)
o Only simple machine instructions; Compiler has to map high-

level language onto simple instructions
o All instructions take the same time
o Used in embedded systems (Real-time hardware, smart phones,

…)

38

Embedded Processors – RISC vs. CISC

11/19/2013 kai.huang@tum

 Micro Controllers (MicroCtrl)
o Used in Control Dominated Systems

o Reactive systems with event driven behavior

o Application examples: cars, consumer electronics (washing
machines, dishwashers etc.)

 Digital Signal Processors (DSPs)
o Used in Data Dominated Systems

o Streaming-oriented systems with mostly periodic behavior

o Application examples: signal processing

 Very Long Instruction Word Processors (VLIWs)
o Used in Data Dominated Systems

o Application examples: image processing

11/19/2013 kai.huang@tum 39

Application Specific Instruction Set Processors

 Control-dominant applications
o Supports process scheduling

and synchronization

o Preemption (interrupt), context
switch

o Short latency times

 Low power consumption

 Peripheral units often
integrated

 Suited for real-time
applications

11/19/2013 kai.huang@tum 40

ASIP: Micro Controllers

Philips 83 C552:
8 bit-8051 based microcontroller

 Optimized for data-flow
applications

 Suited for simple control flow

 Parallel hardware units

 Specialized instruction set

 High data throughput

 Zero-overhead loops

 Specialized memory

 Suited for real-time
applications

11/19/2013 kai.huang@tum 41

ASIP: Digital Signal Processors

 Key idea: detection of possible parallelism to be done
by compiler, not by hardware at run-time (inefficient).

 VLIW: parallel operations (instructions) encoded in one
long word (instruction packet), each instruction
controlling one functional unit.

 VLIW processors are an example of the so called
Explicit Parallelism Instruction Computers (EPIC)

11/19/2013 kai.huang@tum 42

Very Long Instruction Word Processors

 5 issue slots (functional units FU),
 therefore up to 5 instructions can be executed in parallel

11/19/2013 kai.huang@tum 43

Philips TriMedia VLIW CPU

 Custom-designed circuits
necessary
o if ultimate speed or
o energy efficiency is the goal

and
o large numbers can be sold.

 Approach suffers from
o long design times,
o lack of flexibility (changing

standards)
o high costs, i.e., Millions of $

mask costs

11/19/2013 kai.huang@tum 44

Application Specific Integrated Circuits (ASICs)

 Full custom chips (HW) may be too expensive, software (SW) too
slow.

 Combine the speed of HW with the flexibility of SW
o HW with programmable functions and interconnect.
o HW (Re-)Configurable at design-time or at run-time (dynamic

reconfiguration)

 Field Programmable Gate Arrays (FPGAs)
o Currently the most sophisticated and used RPUs
o Applications

• Fast and very cheap prototyping of (MP-)SoCs
• Encryption,
• Fast “object recognition“ (medical and military)
• Adapting mobile phones to different standards

 Very popular devices from
o XILINX (Virtex II(Pro), Virtex 4, Virtex 5, Virtex 6, Virtex 7)
o Altera (Cyclone, Arria, Stratix)
o Actel and others

11/19/2013 kai.huang@tum 45

Reconfigurable Processing Units (RPUs)

11/19/2013 kai.huang@tum 46

Floor-plan of VIRTEX II FPGAs

 Configurable Logic Block (CLB)
 Digital Clock Manager (DCM)
 Input/Output Blocks (IOB)

11/19/2013 kai.huang@tum 47

System-on-Chip (SoC)

 The main difference between general purpose
highest volume microprocessors and embedded
systems is specialization.

 Specialization should respect flexibility
o application domain specific systems shall cover a class

of applications
o some flexibility is required to account for late changes,

debugging

 System analysis required
o identification of application properties which can be

used for specialization
o quantification of individual specialization effects

11/19/2013 kai.huang@tum 48

System Specialization

11/19/2013 kai.huang@tum 49

Why Implementation Alternatives?

 Trade-off between Flexibility and
Performance/Power Efficiency

© Hugo De Man, IMEC,
Philips, 2007

Energy Efficiency

11/19/2013 50 kai.huang@tum

