.

= TUTI
E Robotics and Embedded Systems

Technische Universitat Minchen

Embedded Hardware (1)
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The Hardware &,

PS4->

£ - P < 1.',‘- 4 " b
o ‘ : ‘ ! AN & 2 y
¥ -
' |
-

¥l CPU semi-custom x86 AMD APU
| ‘ 28nm 8-core Jaguar CPU
@ CPU frequency 1.6 GHz 1.75 GHz
GPU 18 CUs:1152 shaders 12 CUs:768 shader
(800MHz) (853 MHz)
Memory 8G 5500MHz DDR5 8G 2133MHz DDR3
Mem Bandwidth 176GB/sec 68.3GB/sec
MD Embedded SRAM N/A 32MB (204GB/sec)

E'lj 11/19/2013 kai.huang@tum 3 m



SoC Components

15 special purpose processors Any DRAM data can be

o)
offload CPU & GPU coherent with CPU caches
¢:D{ PCle j E 68 GB/sec

CPUCache-Coherent 30 GB/sec pesk BW

coherent BW 4 x 64 bit
Memory Access
) —

| oows

[ Audio Processors

Audio DMA

24

:[AV Out Rsz Cmpst

:u AV In

( video Encode

4

CPU, GPU, special processors,
and 10 share memory via host-
guest MMUs and synchronized

| ooks

LJRR» J0ICJ030
C:
<

( video Decode page tables iy
CNTR
(swizzle/Lz Encode
2GB
('swz LZiMUPG Dcd 109 GB/sec min PORS
204 GB/sec peak BW
( Swizzle Copy 4 x 256 bit read & write
( Swizzle Copy {} {} {} {;- A LN 2GB
NT V| DDR3
Graphics Core 8MB |8MB | 8MB | 8 MB

fa) XBOX

@ 11/19/2013 kai.huang@tum 4 m




Dataflow MoC Recap

Kahn Process Network Synchronous DataFlow
h 3 1
init=1 h2
4 2
6
g f e |54 f
1 1
h
init=0 31 M3

E'lj 11/19/2013 kai.huang@tum 5 m



Outline

" Processor

= Memory
= |/O

11/19/8813
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Outline

= Processor
o Single-cycle datapath
o Pipeline datapath
o Processor types

E'lj 11/19/2013 kai.huang@tum 7 m



iter

Arbl

Y-Chart Methodology

HW

CP Mem
s
P1| [P3 ) A |
W& o 1 [
0 e , I P5
CPU Bus o IP Bus
— g P2 P4
\2 |

r/
p
Architecture Applications
model = model

N\

Performance

N
Performance
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Embedded System Hardware

Embedded system hardware is frequently used in a loop
(“hardware in a loop”):

This course

A/D converter Information
Sample-and-hold processing
| -

|
Sensors
% &

Embedded system

(& 11/19/2013 kai.huang@tum



The Big Picture

= Since 1946 all computers have had 5 components

Input unit accepts information:
eHuman operators,
eElectromechanical devices

Control unit coordinates

eOther computers

various actions:

eInput, Processor

eQutput

eProcessing Control
Datapath

Datapath:

Memory

Input

Output

ethe part of the central

processing unit (CPU)
that does the actual
computations

(& 11/19/2013

Stores information:

e|nstructions,
eData

kai.huang@tum

Output unit sends
results of processing:
*To a monitor display,
eTo a printer

10 N



Datapath Components

= Combinational Elements
o ALU, Adder

o Immediate extender

o Multiplexers

= Storage Elements

O

O

O

O

" Clocking methodology

o Timing of reads and writes

Instruction memory
Data memory

PC register
Register file

11/19/8813

0
16 3 m
u
b 4
1
ExtOp select
32
Instruction
32 32 32
Q wip| Address
Instruction
Memory
Registers
5 : 32
~>lpa  File BusA s>
5
7=>| RB BUSB»
5
| RW BUSW
us

Cloc

kai.huang@tum

~

RegWrite f32

i

)8

32

—» zero

32
»ALU result

— overflow

/fALU control

Data
Memory

32

» Address
32

e g

Data_in

32

Data_out »

T

MemRead

™~

f

MemWrite



ALU: Arithmetic Logic Unit

1. ALU is a digital circuit that performs
Arithmetic (Add, Sub, .. .) and Logical (AND,
OR, NOT) operations.

2. John Von Neumann proposed the ALU in

L

1945 when he was working on EDVAC.

Operation
E /J\
= LA
> "I > Result
! &
b
H- 1-Bit ALU
11/19/2013 kai.huang@tum 12




e

<

Shift
Operation

Arithmetic

Operation

Operation

\

ultifunction ALU

( None =00

SLL=01
SRL=10
SRA=11

ADD =0

32 v

Shift Amount

>

” Isb 5

SUB=1

Logic Unit

AND =00

OR=01
NOR =10
XOR =11

11/19/8813

kai.huang@tum

SLT: ALU does a SUB
and check the sign and
overflow

ALU Result

\fz zero

ALU
Selection

Shift =00

SLT=01
Arith =10
Logic=11

overflow

\

13 N



Instruction
Memory

Instruction

Address

11/19/8813

32

Op

Rs

Rt

RegDst

—»(—~ Xe8o

Single-Cycle Datapath (with Control Signal)

30 Jump or Branch Target Address

<_
u J, Beq, Bne
Nl ALU result
\kro
RA BusA Data
. Memor 0
Registers @ A ¥ m |32
> L Address u
m Data_out 1
: Data_in 4
RW BusW 1
T I
RegWrite ExtOp ALUSrc  ALUCtrl
func
I—
MemRead
/\\/ ALUOp MemWrite MemtoReg
Main I
Control /
kai.huang@tum 14



L

Register Transfer Level (RTL)

= RTL is a description of data flow between

registers

= RTL gives a meaning to the instructions

= All instructions are fetched from memory at
address PC

Instruction RTL Description

Reg(Rd) < Reg(Rs) + Reg(Rt);

Reg(Rd) < Reg(Rs)— Reg(Rt);

Reg(Rt) <& Reg(Rs) | zero_ext(Im16);
Reg(Rt) < MEMJ[Reg(Rs) + sign_ext(Im16)];
MEM[Reg(Rs) + sign_ext(Im16)] < Reg(Rt);

if (Reg(Rs) == Reg(Rt))

ADD
SUB
ORI
LW
SW
BEQ

else

11/19/8813

PC& PC+4 +4 xsign_extend(Im16)
PC<PC+4

kai.huang@tum

b

PC< PC+4
PC< PC+4
PC< PC+4
PC<PC+4
PC< PC+4

I



L

Instructions are Executed in Steps

R-type

|-type

BEQ

Fetch instruction:
Fetch operands:

Execute operation:

Write ALU result:
Next PC address:

Fetch instruction:
Fetch operands:

Execute operation:

Write ALU result:
Next PC address:

Fetch instruction:
Fetch operands:
Equality:

Branch:

11/19/8813

Instruction & MEM[PC]

datal < Reg(Rs), data2 < Reg(Rt)
ALU_result ¢ func(datal, data2)
Reg(Rd) ¢ ALU result

PC< PC+4

Instruction & MEM[PC]

datal < Reg(Rs), data2 & Extend(imm16)
ALU_result ¢ op(datal, data2)

Reg(Rt) < ALU result

PC< PC+4

Instruction & MEMI[PC]
datal < Reg(Rs), data2 & Reg(Rt)
zero & subtract(datal, data2)

if (zero) PC & PC + 4 + 4xsign_ext(imm16)
else PC<PC+4
kai.huang@tum 16




Instruction Execution Examples

= W
lw Rt,C(Rs)

= SW
sw Rt,C(Rs)

= Jump Fetch instruction:
jC Target PC address:
Jump:
11/19/2013

Fetch instruction:

Fetch base register:
Calculate address:

Read memory:
Write register Rt:
Next PC address:

Fetch instruction:
Fetch registers:

Calculate address:

Write memory:
Next PC address:

kai.huang@tum 17

Instruction & MEM[PC]

base & Reg(Rs)

address & base + sign_extend(imm16)
data &< MEM[address]

Reg(Rt) < data

PC< PC+4

Instruction & MEM[PC]

base & Reg(Rs), data < Reg(Rt)
address & base + sign_extend(imm16)
MEM[address] ¢ data

PC<PC+4

concatenation

Instruction < MEMI[PC] /
target < PC[31:28], Imm26, ‘00’
PC < target



ExtOp = ‘sign’ to sign-extend
Immmediatel6 to 32 bits

ExtOp =
sign

ALUSrc
=1

32

ALUCtrl
=ADD

MemRead

=1 =0

J ALU result l

MemWrite

Data
Memory

Address

Data_out
Data_in

Execution of Load Instruction: lw Rt,C(Rs)

MemtoReg
=1

Instruction
M RA BusA
30 emory .
S Instruction Registers
32 RB BusB
8) Address
o
RW BusW
Py RegDst  RegWrite
RegDst = ‘0’ selects Rt as =0 -1
destination register

MemRead = ‘1’ to read data memory

ALUSrc = ‘1’ selects extended immediate as
second ALU input

MemtoReg = ‘1’ places the data read from
memory on BusW

ALUCtrl = ‘ADD’ to calculate data memory address
as Reg(Rs) + sign-extend(Imm16)

RegWrite = ‘1’ to write the memory data
on BusW to register Rt

11/19/2013 kai.huang@tum
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Execution of Store Instruction: sw Rt,C(Rs)

ExtOp = ‘sign’ to sign-extend
Immmediatel6 to 32 bits

Memory

Address

Instruction

ALUSrc
=1

Instruction

RegDst = ‘x’ because no

destination register

RegDst
=X

BusA

RA

Registers

RB BusB

RW BusW

A4
CcCr>»

T

RegWrite
=0

ALUCtrl
=ADD

32

32

MemRead

=0 =1

J ALU result l

Data
Memory

Address

Data_out
Data_in

MemWrite

MemtoReg

=X

~ W

MemWrite = ‘1’ to write data memory

ALUSrc = ‘1’ to select the extended immediate as

second ALU input

MemtoReg = ‘x’ because we don’t care
what data is placed on BusW

ALUCtrl = ‘ADD’ to calculate data memory address
as Reg(Rs) + sign-extend(Imm16)

RegWrite = ‘0O’ because no register is
written by the store instruction

11/19/8813

kai.huang@tum

7
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Execution of Jump Instruction: j C

30 Jump Target Address

Instruction
Memory

Instruction

Address

J =1 selects Imm26 as
jump target address

Upper 4 bits are from the
incremented PC

PCSrc = 1 to select
jump target address

11/19/8813

[ RN

o
aED

Rs

~Nwv

Rt

RegDst
=X

=X

=X

=X

MemRead MemWrite
il =0 =0
<_
4_ MemtoReg
ALU result =X
~ Imm16
RA BusA \ Data
. Memor 0
Registers _>@ A y m|32
- > L Address » |2 /
BusB 0 x
m U Data_out| / 1
: Data_in
RW BusW 1
RegWrite
=0 ExtOp ALUSrc  ALUCtrl J=1

MemRead, MemWrite & RegWrite are O

We don’t care about RegDst, ExtOp, ALUSrc,

ALUCtrl, and MemtoReg

kai.huang@tum
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Drawbacks of Single Cycle Processor

" Long cycle time
o All instructions take as much time as the slowest

Arithmetic

Load

Store

Branch

Jump

= Alternative Solution: Multicycle implementation

Instruction Fetch

Reg Read

ALU

Reg Write

ongest delay

Vv

Instruction Fetch | Reg Read ALU Memory Read Reg Write
Instruction Fetch | Reg Read ALU Memory Write

Instruction Fetch | Reg Read ALU

Instruction Fetch Decode

o Break down instruction execution into multiple cycles

| 11/19/2013

kai.huang@tum
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Single-Cycle vs. Multicycle

Clock

Time
needed

Time
allotted

Instr 1

Instr 2

Instr 3

Instr 4

Cloc kJ

Time
needed

3 cycles

5 cycles

3 cycles

4 cycles

Time
allotted

Instr 1

Instr 2

Instr 3

Instr 4

11/19/8813

kai.huang@tum

22

Time
saved




Outline

" Processor

o Pipeline datapath

E:j 11/19/2013 kai.huang@tum 23 m



Single-Cycle Datapath

= Shown below is the single-cycle datapath
= How to pipeline this single-cycle datapath?
Answer: Introduce registers at the end of each stage

IF = Instruction Fetch: ID =Decode and 1 EX=Executeand MEM = Memory E WB = Write
1 1 1
! Register Fetch ! Calculate Address ! Access ! Back
1 1
| : : | !
Inc I : g : :
! ! Next | ! !
1 1 1 1
8 1 Imm26 X PC : ALU result :
1 § 1
1'?1 Rs : zero E
> 1
ump § Address "| Register fmi Data |
x . S File \ A Memory
1 Instruction e
= > L . Address
Instruction I?l = @ U |
1 .
Memory u Data_in
y x /
1
1
1 T
1 1 1

(& 11/19/2013 kai.huang@tum 24 i



Pipelined Datapath

" Pipeline registers, in green, separate each pipeline stage
" Pipeline registers are labeled by the stages they separate
" |sthere a problem with the register destination address?

IF = Instruction Fetch : ID = Decode : EX = Execute : MEM = Memory ' WB

IF/IID ID/IEX EX/I\I/IEM E
Inc _L’ : > > Next : :

- : : : MEM/WB
§ i Imm26 > i PC i —E—
I'?'l E E Imm16 sero E |
u = Address : RS > . = | : AL resul 0 E
x ! Register ! A ! m !
Y | Instruction = E Rt »| File E @ > L E L Address 2 E
Instruction ! > > ! U ! Data 1 :
Memory : = 3| | . : Memory :
' 1 ‘ ' »| | f=pp|Data_in '
\ | Rd : | :
1 > 1 | 1
1] 1] 1] T

| 11/19/2013 kai.huang@tum 25




Corrected Pipelined Datapath

= Destination register number should come from MEM/WB
o Along with the data during the written back stage

= Destination register number is passed from ID to WB stage

IF : ID : EX : MEM  WB

IF/ID ID/EX EX/MEM E
Inc —I—P i P | [ Next : :

- : : : MEM/WB
§ i Imm26 > i PC i —i—
1(1)1 E E Imm16 zer0 E E
u & Address : e > : > | | —_ 0 |
x ! Register ! A ! ‘ m !
1 | Instruction = E Rt > File E @ > L E Address : E
Instruction : > > U : Data 1 |
Memory | ER- : l : Memory :
! 1 ' »| | jp|Data_in '
i | : 1!

Hng I N g gy

(& 11/19/2013 kai.huang@tum 26 i




<— Program Execution Order

Graphically Representing Pipelines

= Multiple instruction execution over multiple clock cycles
o Instructions are listed in execution order from top to bottom
o Clock cycles move from left to right
o Figure shows the use of resources at each stage and each cycle

1—Time (in cycles)— CC1 + CC2 + CC3 + CC4 1 CCH + CC6 + cCc7 + CCS—;>

e =
[t m
[
[

lw $6, 8($5)
add $1, $2, $3
ori $4, $3,7
sub $5, $2, $3
sw $2,10(%$3)

11/19/8813

i

e

|

kai.huang@tum
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Instruction—Time Diagram

= Diagram shows:

71D ofex BMEM
Inc H H
: Next | [+
! H MEW/W
B | i
9 o fems T [
i N f g ALU result 5
B gister 711 Rt |
nstrueton 1 | e | | : u
H H Lot x
Instruction ! ! u ! Data
" i :[: | e
4 i H Data,
I i i

o Which instruction occupies what stage at each clock cycle
" |nstruction execution is pipelined over the 5 stages

Up to five instructions can be in

ALU instructions skip

11/19/2013 kai.huang@tum

execution during a single cycle T the MEM stage. Store
| Y instructions skip the
g 1 WB stage
S Iw $7,8($3) IF | ID | EX |MEM| WB 7 :

/ |

S Iw $6,8($5) F | 1D | EX |MEM[ ws |/ !
< 1
% ori $4,$3,7 F | D | EX | =" wB i
£ sub $5,$2,$3 F | D | Ex| - |ws| !
E sw $2,10($3) F | D | ex [MEM| L
l 'CC1 CC2 CC3 CC4 CCB CC6 CCT CC8 CC9 Time

28 N




Single-Cycle vs Pipelined Performance

= Consider a 5-stage instruction execution in which ...

o Instruction fetch = ALU operation = Data memory access =
200 ps

o Register read = register write = 150 ps
= What is the single-cycle non-pipelined time?
= What is the pipelined cycle time?
= What is the speedup factor for pipelined execution?

= Solution
Non-pipelined cycle = 200+150+200+200+150 = 900 ps

IF Reg ALU MEM Reg

< 900 ps > IF Reg ALU MEM Reg
< 900 ps

v

& 11/19/2013 kai.huang@tum 29 U



Single-Cycle versus Pipelined — cont’d
" Pipelined cycle time = max(200, 150) = 200 ps

IF Reg ALU MEM Reg
« 200 - |F Reg ALU MEM | Reg
<+ 200 —» IF Reg ALU MEM Reg

<+« 200 >« 200 >« 200 >« 200 >« 200 —»

= CPI for pipelined execution =1
o One instruction completes each cycle (ignoring pipeline fill)
= Speedup of pipelined execution =900 ps / 200 ps = 4.5
o Instruction count and CPI are equal in both cases

» Speedup factor is less than 5 (humber of pipeline stage)
o Because the pipeline stages are not balanced

(A 11/19/2013 kai.huang@tum 30




Summary between Datapaths
. |singleyde | MultipleCycle _|Pipeliie

Clock Cycle Time

Cycle Per Instruction

# instruction executing
concurrently

Duplicate Hardware

Long (Long enough for
the slowest instruction)

1 clock cycle per
instruction (by
definition)

Yes, since we can use a
functional unit (FU) for

at most one subtask per

instruction
Extra Register No
Performance Baseline
I 11/19/2013

Short (long enough for
the slowest instruction
step)

Variable number of
clock cycles per
instruction

No, since the
instruction generally is
broken into single-FU
steps

Yes, to hold results for
the next step

Faster, but not too fast

kai.huang@tum

Short (long enough for
the slowest pipeline
stage)

Fixed number of clock
cycles per instruction,
one for each pipeline
stage

# pipeline stage

Yes, to avoid restriction
on pipeline execution

Yes, to provide results
for the pipeline stage

Fastest , if pipeline is
balanced

31 N



Outline

" Processor

o Processor types
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General Purpose Processors (GPP)

" High performance
o Highly optimized circuits and technology

o Use of parallelism
e superscalar: dynamic scheduling of instructions

* super-pipelining: instruction pipelining, branch prediction,
speculation

o complex memory hierarchy

= Not suited for real-time applications

o Execution times are highly unpredictable because of
intensive resource sharing and dynamic decisions

= Properties
o Good average performance for large application mix
o High power consumption

ki 11/19/2013 kai.huang@tum 33 U



GPP + Memory (I): von Neumann Architecture

N

200

PC
address IR
Memory
Data + Program data CcPU
ADD al,a2,aN
GPR
11/19/2013 kai.huang@tum

o Ul WN B

. PC:=200

. Fetch => IR := Mem[P(]
. Decode IR

. Execute

.PC:=PC+1

. goto 2

34 N



GPP + Memory (ll): Harvard Architecture

address
Program PC
Memory data IR
CPU
address
Data
Memory data GPR

E'-j 11/19/2013 kai.huang@tum . m



Buffer Allocation
Register Rename

Instruction Queue |
critical fields of the uOps )

General Inst

Memory lns ruction \

(queucs register entrics |v1||' ney
Ids of the uOps for scheduling)

Floating Point
Renamed Register File
128 entries of 125 bit

uOp Schedulers
FP Move Schodu 3

(8x8 dependency matrix)

Parallel (Matrix) Sched
for the two double pumped ALU'S

General Floatin
Slow Integer Scheduler
(8xX dependency matrix)

Load / Store ulp S
(8x8 dependency matrix)

Load / Store Lincs
Collision History Table

Integer Execution Core ¥

(1) uOp Dispatch umil &
Dispatches (l[‘hlll]()l!\ cycle

(2) Integer Renamed Keg
I_‘ncnumul 32 bit + 6 status (1
12 read ports and six write ports

(3) Databus switch & By

from the Integer Rrg:l\h-n Fike
(4) Flags, Write Hach
(5) Double Pumped Al
(6) Double Pumped Al
(7) Load Address Generator Uni
(8) Store Address Generator Un
(9) Load Buffer ( 45 cotn

(10) Store Bufler ( 24 cntric

Intel Pentium 4 Northwood

Execution Pipeline Start

Rogrster Alias History Tables (
Register Alias Table

uOp Quen

Micro code Sequence
Micro code ROM & Fla

Instruction Trace Cache

Trace Cache
Fill Buller

Distributed Tag comparaic
24 bit virtual T

Trace Cache Acces
next Address Predict

Trace Cache Branch |
Table (BTB), 512 entnes

Return Stacks (2x 16 entnes
Trace Cache next [P's (Ix)

Miscellancous Tag Data

3 I Instruction Decoder
Hgya o Up 10 4 decoded ul

ﬂ"'“‘i"?ﬂ

L.2 Cache

| 256 1Byte- {

.
o - -

256 kByte -
L2 Cache
. Block

-

. e

e o

Hn[‘? il

Lall

I -

(1) ROB Reorder B
(12) B kByte Level | Data cacl

(13) Summed Address Ing
(14) Cache Line R\.nl \\xm Ix nsferbuf

(from max. one x86 instr/c
Instructions with more than fou
handied by Micro Sequencer

Trace Cache LRU tuis
Raw Instruction Bytes in
Data TLB, 64 entr

associntive, between thre

— lual ported (for lo ul nul stores)
"'W

Instruction Felc
from L2 cache and
Branch Prediction

Front End Brang
Tables (BTRB), shared, 409
entries in total

Instruction TLEB

lnll\¢ sociative for 4k a

pages, In \|ll|| addre

Out: Phys LllJAllll\\~\"‘|:
¢ level bits

Front Side Bus Intc
face, 400..800 MHz

four way set associative. 1R/IW 256 bit wide bus to and from 12 cache April 19,2003 www.chip-architect.com

I
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Simple GPP: Xilinx MicroBlaze

Instruction-side

bus interface

Data-side
bus interface

/1
|::IOPB > N ALU
5 [+ Program |1 : —\|| ©
c? [N\—] Counter Special N\ Shift | &
(9]
IXCL_M < = ;;‘éf’s‘::fs | ] | Barrel shit 2
IXCL_S ] | muttiplier
T T "
Divider
SN
Bus , —/ B Bus
IF |, |n$BtrL;fCtl0n K {} {} IF
:l; uffer
ILMB
K ] basfindion
Decode |
—N] Register File i
L1 32x32b
N
1

Optional MicroBlaze feature

K_DOPB >

IOPB: Instruction side On chip Peripheral Bus
IXCL_M: Instruction-side Xilinx Cache Link Master

IXCL_S: Instruction-side Xilinx Cache Link Slave

ILMB: Instruction side Local Mory Bus

11/19/8813

DOPB: Data side On chip Peripheral Bus
DXCL_M: Data-side Xilinx Cache Link Master
DXCL_S: Data-side Xilinx Cache Link Slave
DLMB: Data side Local Memory Bus

MFSL: Master Fast Simplex Link

SFSL: Slave Fast Simplex Link

kai.huang@tum
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Embedded Processors — RISC vs. ISC

= Complex instruction set CISC (e.g. x86)

o Map complexity of common instructions directly in machine
code

o Complex instructions can consist of several simple instructions
o Can lead to subtle timing issues
o Used in general purpose computing

* Reduced instruction set RISC (e.g. ARM — Acorn Risc
Machine)

o Only simple machine instructions; Compiler has to map high-
level language onto simple instructions

o All instructions take the same time
o Used in embedded systems (Real-time hardware, smart phones,

)

(& 11/19/2013 kai.huang@tum 38 i



Application Specific Instruction Set Processors

= Micro Controllers (MicroCtrl)
o Used in Control Dominated Systems
o Reactive systems with event driven behavior

o Application examples: cars, consumer electronics (washing
machines, dishwashers etc.)

= Digital Signal Processors (DSPs)
o Used in Data Dominated Systems
o Streaming-oriented systems with mostly periodic behavior
o Application examples: signal processing
= Very Long Instruction Word Processors (VLIWSs)
o Used in Data Dominated Systems
o Application examples: image processing

(& 11/19/2013 kai.huang@tum 39 i



ASIP: Micro Controllers

Control-dominant applications

o Supports process scheduling
and synchronization

o Preemption (interrupt), context

switch

o Short latency times
Low power consumption
Peripheral units often

integrated

Suited for real-time
applications

11/19/8813

VIbPYY 4 v Y

¢ 48 08 88 ¢

processor 8K8 ROM
80CS51 (87C552 8KS8
15 - vector EoLle-
mterrupt 256 x 8 RAM
timer O (16 bit) A/DC
timer 1 (16 bit) 10 - bit
timer 2 PWM
(16 bit) UART
watchdog (T3) [°C

parallel ports 1 through 5

Philips 83 C552:

8 bit-8051 based microcontroller

kai.huang@tum

it v
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ASIP: Digital Signal Processors

= Optimized for data-flow
applications

= Suited for simple control flow

= Parallel hardware units
= Specialized instruction set
= High data throughput

Figure 2-1. TMS320C62x/C67x Block Diagram

Program RAM/cache
32-bit address
256-bit data

Data RAM

32-bit address
8-, 16-, 32-bit data

EMIF 512K bits RAM 512K bits RAM
= /ero- head | - : U
ero-overnead 100ps 5 TR
. L ] [ ] 3A2 \ 11
Specialized memory
Program fetch Control (four
|r)structranrq|srpatcrhﬂ reé’i’;{ec:s i chag{nel;
Instruction decode C|ontrol E[)ng
Data path 1 Data path 2 :gfi" ch‘énnel)
[ o = e es
= Suited for real-time T T T T T (o]
. . [LT[S1[Mi[D1] | [L2[52IM2[02] | ierrupts || [ EXB
applications - - o
Power management pont
11/19/2013 kai.huang@tum 41

JTAG test

Multichannel

¥ TN T1/EN) buffered

serial port

Multichannel

“"HT1/ET) buffered

serial port

S Timer
K
v

Timer

PLL clock
generator

I



Very Long Instruction Word Processors

= Key idea: detection of possible parallelism to be done
by compiler, not by hardware at run-time (inefficient).

= VLIW: parallel operations (instructions) encoded in one

long word (instruction packet), each instruction
controlling one functional unit.

= VLIW processors are an example of the so called
Explicit Parallelism Instruction Computers (EPIC)

-_

instruction packet

T

instruction 1

Instruction 2 iInstruction 3

iInstruction 4

y

¥

v

!

(& 11/19/2013
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Philips TriMedia VLIW CPU

64-Dbit 32-bit
memory peripheral

bus blus multi-port 128 words x 64 bits register file

bypass network
data

— l\l\li‘—n» l‘l\-‘ L A AN\ | ‘\‘T l\l\l‘I‘

HHHH

exce tlons

instructio ‘—'—|—u—|—l—|—\
mmu VLIW instruction decode and launch
32 KB

= 5issue slots (functional units FU),
* therefore up to 5 instructions can be executed in parallel
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Application Specific Integrated Circuits (ASICs)

= Custom-designed circuits
necessary

o if ultimate speed or

o energy efficiency is the goal
and

o large numbers can be sold.

= Approach suffers from
o long design times,

o lack of flexibility (changing
standards)

o high costs, i.e., Millions of S
mask costs
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Reconfigurable Processing Units (RPUs)

= Full custom chips (HW) may be too expensive, software (SW) too
slow.
= Combine the speed of HW with the flexibility of SW
o HW with programmable functions and interconnect.

o HW (Re-)Configurable at design-time or at run-time (dynamic
reconfiguration)

" Field Programmable Gate Arrays (FPGAS)
o Currently the most sophisticated and used RPUs

o Applications
* Fast and very cheap prototyping of (MP-)SoCs
* Encryption,
* Fast “object recognition” (medical and military)
e Adapting mobile phones to different standards
= \ery popular devices from
o XILINX (Virtex ll(Pro), Virtex 4, Virtex 5, Virtex 6, Virtex 7)
o Altera (Cyclone, Arria, Stratix)

o Actel and others
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Floor-plan of VIRTEX Il FPGAs
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System-on-Chip (SoC)

SoC Components

15 special purpose processors cry ] Any DRAM data can be
offload CPU & GPU } coherent with CPU caches
<:::D( Pole j}' 68 GB/sec
30 GB/sec peak BW
CPU-Cache-Coherent
(Audlc Processors M [ - coherent BW 4 x 64 bit
y NS | [
( Audio DMA
K] ook
I 4 ooR3
AV Out Rsz Cmpst I/
L1
AV iIn _r\ ——
I_|/ 2GB
CPU, GPU, special processors,
( Yideo Fncode and 10 share memory via host- |\ c::b RRE
guest MMUs and synchronized I/
( Viieo Desods page tables DRAM
CNTR
Swizzle/LZ Encode ] N
( v ALl N 2GB
(Swz LZ/MJPG Decd 109 GBfsec min r\\ NTV| DDR3
204 GB/sec peak BW V
( Swizzle Copy 4 x 256 bit read & write
E AN N V| DDR3
Graphics Core 8MB [8MB | 8MB | 8 MB V

fa) XBOX
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System Specialization

" The main difference between general purpose
highest volume microprocessors and embedded
systems is specialization.

" Specialization should respect flexibility

o application domain specific systems shall cover a class
of applications

o some flexibility is required to account for late changes,
debugging

= System analysis required

o identification of application properties which can be
used for specialization

o quantification of individual specialization effects
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Why Implementation Alternatives?

3 o Trade-off between Flexibility and
105 Performance/Power Efficiency
a 100 MIPS/mW
s
S  10%- 1-10 MIPS/mW
E 10° - Piéﬁ?&h} IRSTE;L
g CGRAS)
5] 10 MIPS/mW 1-5 MIPS/mW
i 102 510 MIPS/mW
S ] 10 MIPS 0.1-1 MIPS/mW
&
101 .
Inflexible Flexible
Programmability
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Energy Efficiency
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