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 Digging into the TV's menu system, he had noticed that an 
option called "collection of watching info" had been 
switched on by default, he said.  

 After switching it off, he had been surprised to find 
evidence that unencrypted details about each channel 
change had still been transmitted to LG's computer servers, 
but this time a flag in the data had been changed from "1" 
to "0" to indicate the user had opted out. 
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Your Smart TV is Spying on You 

http://www.bbc.co.uk/news/technology-25018225 



 Processor (recap) 

 Memory 

 I/O 
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Outline 
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Why Implementation Alternatives? 

 Trade-off between Flexibility and 
Performance/Power Efficiency 



 Processor (recap) 

 Memory 

o Basics 

o Memory Hierarchy 

o Cache 

 I/O 
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Outline 



 Since 1946 all computers have had 5 components 
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The Big Picture 

Control 

Datapath 

Memory 

Processor 

Input 

Output 

Input unit accepts information: 
•Human operators, 
•Electromechanical devices 
•Other computers 
 

Output unit sends  
results of processing: 
•To a monitor display, 
•To a printer 
 

Datapath: 
•the part of the central 
processing unit (CPU) 
that does the actual 
computations 

Control unit coordinates  
various actions: 
•Input, 
•Output 
•Processing 

 Stores  information: 
•Instructions, 
•Data 



Random Access Memory (RAM) 

 Large arrays of storage cells 

 Volatile memory 

o Hold the stored data as long as it is powered on 

 Random Access 

o Access time is practically the same to any data on a RAM chip 

 

 Chip Select (CS) control signal 

o Select RAM chip to read/write  

 Read/Write (R/W) control signal 

o Specifies memory operation 

 2n × m RAM chip: n-bit address and m-bit data 
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What Is Memory? 

RAM 

Address 

Data 

CS R/W 

n 

m 



 Row decoder 

o Select row to read/write 

 Column decoder 

o Select column to read/write 

 Cell Matrix 

o 2D array of tiny memory cells 

 Sense/Write amplifiers 

o Sense & amplify data on read 

o Drive bit line with data in on write 

 Same data lines are used for data in/out 

Typical Memory Structure 
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 4Kbytes … 
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Memory Board at Early 1970’s or Late 1960’s 



Static RAM Storage Cell 
Static RAM (SRAM): fast but expensive RAM 

 6-Transistor cell with no static current 

 Typically used for caches 

 Provides fast access time 

 Cell Implementation: 

o Cross-coupled inverters store bit 

o Two pass transistors 

o Row decoder selects the word line 

o Pass transistors enable the cell to be read and written 
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Dynamic RAM Storage Cell 
Dynamic RAM (DRAM): slow, cheap, and dense memory 

 Typical choice for main memory 

 Cell Implementation: 

o 1-Transistor cell (pass transistor) 

o Trench capacitor (stores bit) 

 Bit is stored as a charge on capacitor 

 Must be refreshed periodically 

o Because of leakage of charge from tiny capacitor 

 Refreshing for all memory rows 

o Reading each row and writing it back to restore the charge 
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wordline

bitline
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DRAM Refresh Cycles 

 Time   

Threshold   
voltage   

 0 Stored   

 1 Written    Refreshed    Refreshed    Refreshed   

  
  Refresh Cycle 

  

Voltage   
for 1   

Voltage   
for 0   

 Refresh cycle is about tens of milliseconds 

 Refreshing is done for the entire memory 

 Each row is read and written back to restore the charge 

 Some of the memory bandwidth is lost to refresh cycles 
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Loss of Bandwidth to Refresh Cycles 
 Example: 

o A 256 Mb DRAM chip 

o Organized internally as a 16K  16K cell matrix 

o Rows must be refreshed at least once every 50 ms 

o Refreshing a row takes 100 ns 

o What fraction of the memory bandwidth is lost to refresh 
cycles? 

 Solution: 

o Refreshing all 16K rows takes: 16   1024  100 ns = 1.64 ms 

o Loss of 1.64 ms every 50 ms 

o Fraction of lost memory bandwidth = 1.64 / 50 = 3.3% 
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 Processor (recap) 

 Memory 

o Basics 

o Memory Hierarchy 

o Cache 

 I/O 
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Outline 



Processor-Memory Performance Gap 

 1980 – No cache in microprocessor 

 1995 – Two-level cache on microprocessor 

CPU: 55% per year 

DRAM: 7% per year 
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(Parallel) Performance Keeps Increasing 

Hennessy/Patterson: Computer Architecture, 5th ed., 2011] 

Copyright © 2011, Elsevier Inc. All rights Reserved. 
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 Widening speed gap between CPU and main memory 

o Processor operation takes less than 1 ns 

o Main memory requires more than 50 ns to access 

 Each instruction involves at least one memory access 

o One memory access to fetch the instruction 

o A second memory access for load and store instructions 

 Memory bandwidth limits the instruction execution rate 

 Cache memory can help bridge the CPU-memory gap 

 Cache memory is small in size but fast 
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The Need for a Memory Hierarchy 



Typical Memory Hierarchy 
 Registers are at the top of the hierarchy 

o Typical size < 1 KB 
o Access time < 0.5 ns 

 

 Level 1 Cache (8 – 64 KB) 
o Access time: 0.5 – 1 ns 

 L2 Cache (512KB – 8MB) 
o Access time: 2 – 10 ns 

 

 Main Memory (1 – 2 GB) 
o Access time: 50 – 70 ns 

 

 Disk Storage (> 200 GB) 
o Access time: milliseconds 

Microprocessor 

Registers 

L1 Cache 

L2 Cache 
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Disk, Tape, etc 

Memory Bus 
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 Programs access small portion of their address space 

o At any time, only a small set of instructions & data is needed 

 Temporal Locality (in time) 

o If an item is accessed, probably it will be accessed again soon 

o Same loop instructions are fetched each iteration 

o Same procedure may be called and executed many times 

 Spatial Locality (in space) 

o Tendency to access contiguous instructions/data in memory 

o Sequential execution of Instructions 

o Traversing arrays element by element 
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Principle of Locality of Reference 



What is a Cache Memory ? 
 Small and fast (SRAM) memory technology 

o Stores the subset of instructions & data currently being accessed 

 Used to reduce average access time to memory 

 Caches exploit temporal locality by … 

o Keeping recently accessed data closer to the processor 

 Caches exploit spatial locality by … 

o Moving blocks consisting of multiple contiguous words 

 Goal is to achieve 

o Fast speed of cache memory access  

o Balance the cost of the memory system 
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Cache Memories in the Datapath 
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Almost Everything is a Cache ! 
 In computer architecture, almost everything is a cache! 

 Registers: a cache on variables – software managed 

 First-level cache: a cache on second-level cache 

 Second-level cache: a cache on memory 

 Memory: a cache on hard disk 

o Stores recent programs and their data 

o Hard disk can be viewed as an extension to main memory 

 Branch target and prediction buffer 

o Cache on branch target and prediction information 
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 Processor (recap) 

 Memory 

o Basics 

o Memory Hierarchy 

o Cache 

 I/O 
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Outline 



 Q1: Where can a block be placed in a cache? 
o Block placement 

o Direct Mapped, Set Associative, Fully Associative 

 Q2: How is a block found in a cache? 
o Block identification/addressing 

o Block address, tag, index 

 Q3: Which block should be replaced on a miss? 
o Block replacement 

o FIFO, Random, LRU 

 Q4: What happens on a write? 
o Write strategy 

o Write Back or Write Through (with Write Buffer) 

Four Basic Questions on Caches 
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Block Placement: Direct Mapped 
 Block: unit of data transfer between cache and memory 
 Direct Mapped Cache: 

o A block can be placed in exactly one location in the cache 
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 A memory address is divided into 

o Block address: identifies block in memory 

o Block offset: to access bytes within a block 

 A block address is further divided into 

o Index: used for direct cache access 

o Tag: most-significant bits of block address 

 Index = Block Address mod Cache Blocks 

 Tag must be stored also inside cache 

o For block identification 

 A valid bit is also required to indicate 

o Whether a cache block is valid or not 

Direct-Mapped Cache 

V Tag Block Data 

= 

Hit 

Data 

Tag Index offset 

Block Address 
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 Cache hit: block is stored inside cache 
o Index is used to access cache block 

o Address tag is compared against stored tag 

o If equal and cache block is valid then hit 

o Otherwise: cache miss 

 If number of cache blocks is 2n 

o n bits are used for the cache index 

 If number of bytes in a block is 2b 

o b bits are used for the block offset 

 If 32 bits are used for an address 
o 32 – n – b bits are used for the tag 

 Cache data size = 2n+b bytes 

Direct Mapped Cache – cont’d 

V Tag Block Data 

= 

Hit 

Data 

Tag Index offset 

Block Address 
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 Example 
o Consider a direct-mapped cache with 256 blocks 
o Block size = 16 bytes 
o Compute tag, index, and byte offset of address: 0x01FFF8AC 

 

 Solution 
o 32-bit address is divided into: 

• 4-bit byte offset field, because block size = 24 = 16 bytes 
• 8-bit cache index, because there are 28 = 256 blocks in cache 
• 20-bit tag field 

o Byte offset = 0xC = 12 (least significant 4 bits of address) 
o Cache index = 0x8A = 138 (next lower 8 bits of address) 
o Tag = 0x01FFF (upper 20 bits of address) 

Mapping an Address to a Cache Block 

Tag Index offset 

4 8 20 

Block Address 
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 Consider a small direct-mapped cache with 32 blocks 
o Cache is initially empty, Block size = 16 bytes 
o The following memory addresses (in decimal) are referenced: 
 1000, 1004, 1008, 2548, 2552, 2556. 
o Map addresses to cache blocks and indicate whether hit or miss 

 Solution: 
o 1000 = 0x3E8 cache index = 0x1E Miss (first access) 
o 1004 = 0x3EC cache index = 0x1E Hit 
o 1008 = 0x3F0 cache index = 0x1F Miss (first access) 
o 2548 = 0x9F4 cache index = 0x1F Miss (different tag) 
o 2552 = 0x9F8 cache index = 0x1F Hit 
o 2556 = 0x9FC cache index = 0x1F Hit 

Example on Cache Placement & Misses 

Tag Index offset 

4 5 23 
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Fully Associative Cache 
 A block can be placed anywhere in cache  no 

indexing 
 If m blocks exist then 

o m comparators are needed to match tag 
o Cache data size = m  2b bytes 

m-way associative 

Address 

Tag offset 

Data Hit 

= = = = 

V Tag Block Data V Tag Block Data V Tag Block Data V Tag Block Data 

mux 
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 A set is a group of blocks that can be indexed 

 A block is first mapped onto a set 

o Set index = Block address mod Number of sets in cache 

 If there are m blocks in a set (m-way set associative) then 

o m tags are checked in parallel using m comparators 

 If 2n sets exist then set index consists of n bits 

 Cache data size = m  2n+b bytes (with 2b bytes per block) 

o Without counting tags and valid bits 

 A direct-mapped cache has one block per set (m = 1) 

 A fully-associative cache has one set (2n = 1 or n = 0) 

Set-Associative Cache 
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Set-Associative Cache Diagram 

m-way set-associative 

V Tag Block Data V Tag Block Data V Tag Block Data V Tag Block Data 

Address Tag Index offset 

Data 

= = = = 

mux 
Hit 
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Comparison 

a) Direct Mapped Cache  
c) Set Associative Cache  

b) Fully Associative Cache  



 Cache sends a miss signal to stall the processor 
 Decide which cache block to allocate/replace 

o One choice only when the cache is directly mapped 
o Multiple choices for set-associative or fully-associative cache 

 Transfer the block from lower level memory to this cache 
o Set the valid bit and the tag field from the upper address bits 

 If block to be replaced is modified then write it back 
o Modified block is moved into a Write Buffer 
o Otherwise, block to be replaced can be simply discarded 

 Restart the instruction that caused the cache miss 
 Miss Penalty: clock cycles to process a cache miss 

What Happens on a Cache Miss? 

11/28/2013 35 kai.huang@tum 



 Which block to be replaced on a cache miss? 
 No selection alternatives for direct-mapped caches 
 m blocks per set to choose from for associative caches 
 Random replacement 

o Candidate blocks are randomly selected 
o One counter for all sets (0 to m – 1): incremented on every 

cycle 
o On a cache miss replace block specified by counter 

 First In First Out (FIFO) replacement 
o Replace oldest block in set 
o One counter per set (0 to m – 1): specifies oldest block to 

replace 
o Counter is incremented on a cache miss 

Replacement Policy 

11/28/2013 36 kai.huang@tum 



 Least Recently Used (LRU) 

o Replace block that has been unused for the longest time 

o Order blocks within a set from least to most recently used 

o Update ordering of blocks on each cache hit 

o With m blocks per set, there are m! possible permutations 

 Pure LRU is too costly to implement when m > 2 

o m = 2, there are 2 permutations only (a single bit is needed) 

o m = 4, there are 4! = 24 possible permutations 

o LRU approximation are used in practice 

 For large m > 4, 

 Random replacement can be as effective as LRU 

Replacement Policy – cont’d 
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 Write Through:  
o Writes update cache and lower-level memory 

o Cache control bit: only a Valid bit is needed 

o Memory always has latest data, which simplifies data coherency 

o Can always discard cached data when a block is replaced 

 Write Back: 
o Writes update cache only 

o Cache control bits: Valid and Modified bits are required 

o Modified cached data is written back to memory when replaced 

o Multiple writes to a cache block require only one write to 
memory 

o Uses less memory bandwidth than write-through and less power 

o However, more complex to implement than write through 

Write Policy 
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 Processor 

 Memory 

 I/O 

o PWM, GPIO, DAC, ADC 

o Interfacing I/O 
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Outline 



 Since 1946 all computers have had 5 components 
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The Big Picture 

Control 

Datapath 

Memory 

Processor 

Input 

Output 

Input unit accepts information: 
•Human operators, 
•Electromechanical devices 
•Other computers 
 

Output unit sends  
results of processing: 
•To a monitor display, 
•To a printer 
 

Datapath: 
•the part of the central 
processing unit (CPU) 
that does the actual 
computations 

Control unit coordinates  
various actions: 
•Input, 
•Output 
•Processing 

 Stores  information: 
•Instructions, 
•Data 



 Timers 

 WatchDogs 

 Pulse Width Modulators 

 (PWM) 

 Universal Asynchronous 

 Receiver Transmitter 

 (UART) 

 Inter Integrated Circuit 

 (I2C) 

 ... 
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Examples of I/O Devices 

Philips 83C552: 
8 bit-8051 based microcontroller 



 Deliver variable amounts 
of power to external 
hardware (e.g. LED 
brightness, motor driver) 

 

 Duty cycle: proportion of 
cycle time where voltage is 
high 

 Programming through 
PWM interface 

 

Pulse Width Modulation (PWM) 
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 PWM with high frequencies 
(10-50kHz) to approximate 
signals 

 Timer is configured to reload 
with fixed frequency (PWM 
frequency) 

 Output Compare register is set 
to a value that is a percentage 
of the timer reload value (duty 
cycle) 

 Output is set low when counter 
reaches Output Compare value 

PWM cont‘d 

http://www.fairaudio.de 
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 General Purpose IO (GPIO) can be 
configured as digital input or output 
 

 Digital output: 
Voltage of a pin can be set to high 
(VCC) or low (0V) by setting a bit in a 
register 

 Digital input: 
State of pin (high or low) can be read 
by reading a bit in a register 
 

 What state does the pin have when 
switch is open? 

 floating (high-impedance/tri-stated) 
 
 

General Purpose IO (GPIO) 
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 Pull-up resistor is 
needed for switch-
open-state 

 

 Most microcontrollers 
offer configurable pull-
up and/or pull-down 
resistors 

 

GPIO cont‘d 
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 Encodes input 
 number of most 
 significant ‘1’ as 
 an unsigned 
 number, e.g. 
 “1111” -> “100”, 
 “0111” -> “011”, 
 “0011” -> “010”, 
 “0001” -> “001”, 
 “0000” -> “000” 
 (priority 

encoder) 
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Analog-to-Digital Converter (ADC) 
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ADC: Successive Approximation 



 Current Scaling: Binary-weighted resistor DAC 
implementation 
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Digital-Analog Converter  (DAC) 



 Example of a 3-
bit DAC with 
normalized 
output voltage 
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DAC Example 



 Processor 

 Memory 

 I/O 

o PWM, GPIO, DAC, ADC 

o Interfacing I/O: polling vs. interrupt  
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Outline 



 I/O Devices are mapped in the 
address space of Computation 
Components (CC), i.e., CCs 
communicate with I/O devices 
simply by reading/writing from/to 
memory cells. 
 

 Two general methods for access 
o Polling - includes, a kind of busy-wait 

loop 
o Interrupts - using interrupt line of CC 

to provide service to devices 
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Interfacing I/O Devices to Processor 
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 Continuous polling 
While (!device ready) { 

 Check device 

} 

 Periodic polling 

 

 Issues: 
o MASTER is tied up in 

communication with device until 
I/O operation is done 

o No other work can be accomplished 
by MASTER  

o Typically one MASTER in system, 
but many I/O devices 

o Only really useful if devices are fast 
• No time consuming context switches 

Polling: Busy-Wait Interface 

Processor 

Status Register 

Ctrl. Register 

Data Register 

I/O device 

master 

slave 

data/address 
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 Procedure 
o When I/O device needs MASTER 

attention, an interrupt signal is 
sent 

o MASTER is “forced” to suspend its 
current task 

• Interrupts can be ignored (masked) 
when critical task is executed 

o MASTER acknowledges interrupt 
and jumps to interrupt service 
routine 

o When finished control is returned 
to the interrupted task 

 

 Key observations: 
o MASTER is free to do something 

else until attention is needed 
o Improves utilization of MASTER, 

leading to a much better 
response 

o I/Os can proceed asynchronously 
o Time consuming context 

switches 

Interrupt 

Processor 

Status Register 

Ctrl. Register 

Data Register 

I/O device 

master 
slave 

data/address 

Intr. ack 

Intr. request 



Polling vs. Interrupt 

Polling 

 Pros 
o Short latencies (low number 

of IOs) 

o Many events do not block the 
normal execution of the 
program 

 Cons 
o Most polls are unnecessary 

o High CPU usage 

o Reaction time depends on 
number of IOs 

 

Interrupt 

 Pros 
o Processor resources are only 

used when needed 

 

 

  

 Cons 
o Program execution is 

interrupted in a non-
deterministic manner 
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