.

= TUTI
E Robotics and Embedded Systems

Technische Universitat Minchen

Embedded Hardware (2)

Your Smart TV is Spying on You

" Digging into the TV's menu system, he had noticed that an
option called "collection of watching info" had been
switched on by default, he said.

= After switching it off, he had been surprised to find
evidence that unencrypted details about each channel
change had still been transmitted to LG's computer servers,
but this time a flag in the data had been changed from "1"
to "O" to |nd|cate the user had opted out.

N s nanan s SSA MBS . g g Nsas . i E N SEINES N o NNV SIS . N

[HTTP request l/l]
R n in frame: 617
ane based text data apphcatmn/x Wi - fom urlenc

e Comy Settng - 340 4c 65 be 67 74 68 3a 20 34 30 0d 0a 43 6f be |

« Disabiity Assistance g 350 65 6e 74 2d 54 79 70 65 3a 20 61 70 70 6¢ 69 ¢
o et K | 360 61 74 69 6f 6e 2f 78 2d 77 77 77 20 66 6f 72 ¢

o O | 376 2d 75 72 6C 65 6e 63 6f 64 65 64 6d 0a 6d 0a

2 ~» Set the Universal Control ‘ o T 380
£ ‘ b 390
3a0

565 72 79 3d 4d 69 64 67 65 74 25 35 46 50 ¢
2.6e 25 35 46 25 33 32 25 33 30 25 33 31 25

DOCTOR'BEET;S|BLOG

http://www.bbc.co.uk/news/technology-25018225

& 11/28/2013 kai.huang@tum 2 i)

Outline

" Processor (recap)
= Memory
= |/O

11/28/2013

kai.huang@tum

Why Implementation Alternatives?

3 o Trade-off between Flexibility and
105 Performance/Power Efficiency
a 100 MIPS/mW
s
S 10%- 1-10 MIPS/mW
E 10° - Piéﬁ?&h} IRSTE;L
g CGRAS)
5] 10 MIPS/mW 1-5 MIPS/mW
i 102 510 MIPS/mW
S] 10 MIPS 0.1-1 MIPS/mW
&
101 .
Inflexible Flexible
Programmability
11/28/2013 kai.huang@tum 4 m

Outline

= Memory
o Basics
o Memory Hierarchy
o Cache

@ 11/28/2013 kai.huang@tum 5 m

The Big Picture

= Since 1946 all computers have had 5 components

Input unit accepts information:
eHuman operators,
eElectromechanical devices

Control unit coordinates

eOther computers

various actions:

eInput, Processor

eQutput

eProcessing Control
Datapath

Datapath:

Memory

Input

Output

ethe part of the central

processing unit (CPU)
that does the actual
computations

(& 11/28/2013

Stores information:

e|nstructions,

eData

kai.huang@tum

Output unit sends
results of processing:
*To a monitor display,
eTo a printer

6 N

What Is Memory?

Random Access Memory (RAM)

L

Large arrays of storage cells

Volatile memory

o Hold the stored data as long as it is powered on

Random Access

o Access time is practically the same to any data on a RAM chip

Chip Select (CS) control signal
o Select RAM chip to read/write
Read/Write (R/W) control signal
o Specifies memory operation

2" x m RAM chip: n-bit address and m-bit data

11/28/2013 kai.huang@tum

—>
—r

RAM

Address

Data

Typical Memory Structure

= Row decoder

o Select row to read/write

" Column decoder

o Select column to read/write

= Cell Matrix

o 2D array of tiny memory cells

= Sense/Write amplifiers
o Sense & amplify data on read

o Drive bit line with data in on write

= Same data lines are used for data in/out

11/28/2013

\

Row address

Row Decoder

[

1024 x 1024

Cell Matrix

Data «——»

R/W—»

Sense/write amplifiers

\ Column Decoder /

kai.huang@tum

10
Column address

Memory Arrays

2:4
Decoder bitline, bitline, bitline,
11 Wordllne3 | | |
Add 5 stored stored stored
ress wordline bit = 0 bit = 1 bit = 0
10 2 | [|
stored stored stored
wordline bit=1 bit=0 bit=0
01 : | | |
stored stored stored
. bit=1 bit=1 bit=0
wordllne0
00 | | |
stored stored stored
bit=0 bit=1 bit=1
Data, Data, Data,
(& 11/28/2013 kai.huang@tum 9 T

Memory Board at Early 1970’s or Late 1960’s

= 4Kbytes ...

- —

o \ AAASEAT Aron Ase | ERINRIeR O SohanERin (ddradsbirsonenaerey peastmar b)
" RETTRNEEEY SRS JMBTREI ITORRARTL - R RRINET BRI NPT LU L) \‘

I Ies 243555

-._‘ e {7 s ——, :.;.‘/."3 '.‘ £
aiaTaiinndgarnntnnnnsanannoih = kb

SES e Y

S

kA 11/28/2013 kai.huang@tum 10 U

L

Static RAM Storage Cell

Static RAM (SRAM): fast but expensive RAM

= 6-Transistor cell with no static current

= Typically used for caches

" Provides fast access time

= Cell Implementation:

o Cross-coupled inverters store bit

o Two pass transistors

o Row decoder selects the word line

WL
Vop .
N
Ms - — Ms
.1 TLC
: |
H Y
BL M, Ma—l BL
I .

o Pass transistors enable the cell to be read and written

11/28/2013

kai.huang@tum

™~

L

Dynamic RAM Storage Cell

Dynamic RAM (DRAM): slow, cheap, and dense memory
= Typical choice for main memory
= Cell Implementation:

. . bitline
o 1-Transistor cell (pass transistor)

wordline

o Trench capacitor (stores bit) pass Transistor

oy o . Capacitor
= Bit is stored as a charge on capacitor 7

= Must be refreshed periodically

o Because of leakage of charge from tiny capacitor

= Refreshing for all memory rows

o Reading each row and writing it back to restore the charge

11/28/2013 kai.huang@tum 12 T

DRAM Refresh Cycles

= Refresh cycle is about tens of milliseconds

= Refreshing is done for the entire memory
= Eachrow is read and written back to restore the charge

= Some of the memory bandwidth is lost to refresh cycles

A

Voltage 1 Written Refreshed Refreshed Refreshed
T \I\I\I\
Threshold
voltage ~[="~ TTTT T T T T TS TS o oo oo oo oo———————————-— -
0 Stored Refresh Cycle |
Voltage Time
for O | | >

& 11/28/2013 kai.huang@tum 13 U

Loss of Bandwidth to Refresh Cycles

= Example:
o A 256 Mb DRAM chip
o Organized internally as a 16K x 16K cell matrix
o Rows must be refreshed at least once every 50 ms
o Refreshing a row takes 100 ns

o What fraction of the memory bandwidth is lost to refresh
cycles?

= Solution:
o Refreshing all 16K rows takes: 16 x 1024 x 100 ns = 1.64 ms

o Loss of 1.64 ms every 50 ms

o Fraction of lost memory bandwidth =1.64 /50 =3.3%

Eij 11/28/2013 kai.huang@tum 14 m

Outline

= Memory

o Memory Hierarchy

ki 11/28/2013 kai.huang@tum 15 i

Processor-Memory Performance Gap

CPU: 55% per year

1000 [
“Moore’s Law”
S 100
% Processor-Memory
& Performance Gap:
o (grows 50% per year)
g = L s g S
Q
(a¥
DRAM: 7% per year
1o+ . . .

= 1980 — No cache in microprocessor
= 1995 - Two-level cache on microprocessor

Eij 11/28/2013 kai.huang@tum 16

100,000

Intel Core Duo Extreme 2 cores, 3.0 GHz -~ 5421 871
Intel Core 2 Extreme 2 cores, 2.9 GHz 27194
10,000 oo e so AMD Athlon 64, 2.8 GHZ 2 awr3 AL aeeinans .
* AMD Athion, 2 6 GHz _emam? 11s
Intel Xeon EE 3.2 GHz 7.108
Inte! DBSOEMVA motherboard (3,06 GHz, Pentium 4 processor with Hyper-Threading Technclogy) 6,043 6.681
IBM Powerd, 1.3 GHz 4,195
Intel VC820 motherboard, 1.0 GHz Pentium il precesso - 3,018
Professional Workstation XP1000, 667 MHz 21264A . 26; 79
Digital AlphaServer 8400 6/575, 575 MHz 21264 .
OO0 ~f>sresrrvrsrnsansssnsnseasrssanesssersarsrgasrrasnare? gital AlbhaS erver 8400 6/575, 575 AHz 21264 oS e A e R e e
AlphaServer 4000 5/600, 600 MHz 2116 'é;c
Digital Alphastation 5/500, 500 MHz ST
#4819
Digital Alphastation 5/300, 300 MHz
5 22%/year

Performance (vs. VAX-11/780)

(Parallel) Performance Keeps Increasing

Intel Xeon 6 r(.rc 5, 3.3 GHz (boost 1o 3.6 GHz)
'ﬂtIXt(,f‘-ixnr_, 3.3 GHz (boost to 3.6 GHz)
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)

O e e e e e e e o A Y, o e e B NSRBI - () o

Dignal 3000 AXP/500, 160 Mhz
HP 3000/750, 86 MHz

IBM RS6000/540, 30 h”"? 24
MIPS M2000, 25 MHz
MIPS M/120, 16.7 MHz

1O riemeseieitvnmmitnnsi g AR TSR PR PRRR OIS S PO C PSPPSRI 5 i
VAX 8700, 22 MHz 5
AX-11/780, 6 MHz _.“"‘ Hennessy/Patterson: Computer Architecture, 5th ed., 2011]
& Copyright © 2011, Elsevier Inc. All rights Reserved.
, ?5%/)’9 1.5, VAX-11/785 S 2
1 @

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

11/28/2013 kai.huang@tum 17 T

L

The Need for a Memory Hierarchy

= Widening speed gap between CPU and main memory
o Processor operation takes less than 1 ns

o Main memory requires more than 50 ns to access

® Each instruction involves at least one memory access
o One memory access to fetch the instruction

o A second memory access for load and store instructions
= Memory bandwidth limits the instruction execution rate
= Cache memory can help bridge the CPU-memory gap

= Cache memory is small in size but fast

11/28/2013 kai.huang@tum 18

Typical Memory Hierarchy

= Registers are at the top of the hierarchy

o Typical size <1 KB
o Access time < 0.5 ns

Level 1 Cache (8 — 64 KB)

o Access time: 0.5—-1ns

L2 Cache (512KB — 8MB)

o Access time: 2—-10ns

Main Memory (1 — 2 GB)
o Access time: 50 - 70 ns

Disk Storage (> 200 GB)
o Access time: milliseconds

11/28/2013

Faster

Microprocessor

L1 Cache

L2 Cache

Memory Bus

Memory

1/0 Bus

Bigger

Disk, Tape, etc

kai.huang@tum

7

Principle of Locality of Reference

" Programs access small portion of their address space

o At any time, only a small set of instructions & data is needed

* Temporal Locality (in time)
o If an item is accessed, probably it will be accessed again soon
o Same loop instructions are fetched each iteration

o Same procedure may be called and executed many times

= Spatial Locality (in space)
o Tendency to access contiguous instructions/data in memory
o Sequential execution of Instructions

o Traversing arrays element by element

& 11/28/2013 kai.huang@tum 20 TN

What is a Cache Memory ?

Small and fast (SRAM) memory technology

o Stores the subset of instructions & data currently being accessed
Used to reduce average access time to memory

Caches exploit temporal locality by ...

o Keeping recently accessed data closer to the processor
Caches exploit spatial locality by ...
o Moving blocks consisting of multiple contiguous words

Goal is to achieve
o Fast speed of cache memory access

o Balance the cost of the memory system

11/28/2013 kai.huang@tum 21 T

Cache Memories in the Datapath

PCSrc

Control
Address
Data

I

IF = Instruction Fetch ID = Decode and . EX=Executeand | MEM = Memory 'WB = Write
! Register Fetch | Calculate Address | Access . Back
: . | | |
1 1 1 1
I O Next [® : : :
p—(| C S : : :
PC || : : :
| 1 1 1
| 1 1
Imm26 1 Imm16 S I I
SE : :
£ i ALU result 1
) | ™ !
- Instruction m @ 'ﬁ g —(i—
c U= < fud Add =
§ Cache sl x Rt > U = I a
_ =1 Register W, < Data £
Instruction P! +2 > | | =
8 £ | File ’IR Cache =
a Address [
P U | O P | O fmbeap| Data_in o
1
| - y'y 7y *"5 | L L
Rd, e | g gt :ﬂ
|| _/ 1 1 1
1 1 1
1 ! ! 1
1 1 1 1
1 | | |
1 1 1 1
\ 4 \ \ \ \ 4 .
1 1 1 1
\ 4

Main Memory

11/28/2013

kai.huang@tum

22

Interface between
CPU and memory

I

L

Almost Everything is a Cache !

In computer architecture, almost everything is a cache!
Registers: a cache on variables — software managed
First-level cache: a cache on second-level cache
Second-level cache: a cache on memory

Memory: a cache on hard disk
o Stores recent programs and their data

o Hard disk can be viewed as an extension to main memory

Branch target and prediction buffer

o Cache on branch target and prediction information

11/28/2013 kai.huang@tum 23 T

Outline

" Memory

o Cache

(& 11/28/2013

kai.huang@tum

24

Four Basic Questions on Caches

" Ql1: Where can a block be placed in a cache?
o Block placement
o Direct Mapped, Set Associative, Fully Associative
" Q2:How is a block found in a cache?
o Block identification/addressing
o Block address, tag, index
Q3: Which block should be replaced on a miss?
o Block replacement
o FIFO, Random, LRU
Q4: What happens on a write?
o Write strategy
o Write Back or Write Through (with Write Buffer)

E'lj 11/28/2013 kai.huang@tum 25

L

Block Placement: Direct Mapped

= Block: unit of data transfer between cache and memory

= Direct Mapped Cache:

o A block can be placed in exactly one location in the cache

Main

Memory

O 1 O 1 O 1 O
OO A =1 OO0 1
O OO0 d A dA
In this example:
:)
Cacheindex = c
least significant 3 bits of ®
Memory address
7/ X N
v // RN \\
/| N -
O 1 O 1 O A1 O 1 O 1 O 1 O "1 0 1 0O 10 1 0 10 10 1010 A0
OO Ad 1 OO0 "1 1 OO0 A 1 OO0 A 1 OO0 A 1 OO0 A "1 00 A 100 -
O O 0O 0O A A A 1 0000 A A d 10O 000 ddAd 10000 A —dAd
O OO0 00000 T A A d A A "1 100000000 A A Al 1 A A
O O OO0 00000 0D0DO0D0DO0D00D 0O A A A ™A A ™A A A A o v+ o = A -
11/28/2013 kai.huang@tum 26

L

Direct-Mapped Cache

" A memory address is divided into

Block Address

o Block address: identifies block in memory - A N

Ta Index |offset
o Block offset: to access bytes within a block |g

= A block address is further divided into

o Index: used for direct cache access

V Tag Block Data

o Tag: most-significant bits of block address
Index = Block Address mod Cache Blocks Llsl o °

" Tag must be stored also inside cache

o For block identification

= Avalid bit is also required to indicate

o Whether a cache block is valid or not Data

& 11/28/2013 kai.huang@tum 27 U

L

Direct Mapped Cache - cont’d

Cache hit: block is stored inside cache

o Indexis used to access

o Address tag is compared against stored tag
o If equal and cache block is valid then hit

o Otherwise: cache miss

cache block

If number of cache blocks is 2"

o n bits are used for the
If number of bytes in a
o b bits are used for the
If 32 bits are used for a

cache index

block is 2°
block offset

n address

o 32 —n— b bits are used for the tag
Cache data size = 2" bytes

11/28/2013

kai.huang@tum

Block Address

A

Va

~

Tag

Index | offset

|

V Tag

Block Data

Data

Mapping an Address to a Cache Block

" Example
o Consider a direct-mapped cache with 256 blocks
o Block size = 16 bytes
o Compute tag, index, and byte offset of address: OXxO1FFF8AC

Block Address
= Solution T .4
o 32-bit address is divided into: Tag Index_| offset
* 4-bit byte offset field, because block size = 24 = 16 bytes
» 8-bit cache index, because there are 28 = 256 blocks in cache
e 20-bit tag field
o Byte offset = OxC = 12 (least significant 4 bits of address)
o Cache index = Ox8A = 138 (next lower 8 bits of address)

o Tag = OXO1FFF (upper 20 bits of address)

& 11/28/2013 kai.huang@tum 29 U

Example on Cache Placement & Misses

*= Consider a small direct-mapped cache with 32 blocks

o Cache is initially empty, Block size = 16 bytes

o The following memory addresses (in decimal) are referenced:
1000, 1004, 1008, 2548, 2552, 2556.
o Map addresses to cache blocks and indicate whether hit or miss

&

Solution:

1000 = Ox3E8
1004 = Ox3EC
1008 = Ox3FO0
2548 = Ox9F4
2552 = Ox9F8
2556 = Ox9FC

11/28/2013

23 5 4

Tag Index [offset
cache index = Ox1E
cache index = Ox1E
cache index = Ox1F
cache index = Ox1F
cache index = Ox1F
cache index = Ox1F

kai.huang@tum

Miss (first access)
Hit

Miss (first access)
Miss (different tag)
Hit

Hit

30 N

Fully Associative Cache

= A block can be placed anywhere in cache = no
indexing

" |f m blocks exist then
o m comparators are needed to match tag address
o Cache data size = m x 2° bytes Tag |offset

V Tag Block Data V Tag Block Data V Tag Block Data V Tag Block Data

T T ® ®

AN

AN

m-way associative

& 11/28/2013 kai.huang@tum 31 TN

Set-Associative Cache

A set is a group of blocks that can be indexed

A block is first mapped onto a set

o Set index = Block address mod Number of sets in cache

If there are m blocks in a set (m-way set associative) then

o m tags are checked in parallel using m comparators
If 2" sets exist then set index consists of n bits

Cache data size = m x 2™b pytes (with 2° bytes per block)
o Without counting tags and valid bits

A direct-mapped cache has one block per set (m =1)

A fully-associative cache has one set (2" =1 or n = 0)

11/28/2013 kai.huang@tum 32 T

Set-Associative Cache Diagram

AN

V Tag Block Data

Address Tag Index |offset
l
V Tag Block Data V Tag Block Data V Tag Block Data
e @ L ° >) ® >l @ ®
) 4
:fz
A 4

AN

m-way set-associative Hit

11/28/2013 kai.huang@tum

Comparison

Block Address
A

r ™
Tag Index |offset
]
V Tag Block Data
Ly |® 9 ®

a) Direct Mapped Cache

| 11/28/2013

Address

| Tag ‘ offset |

V Tag Block Data V Tag Block Data

V Tag Block Data

V Tag Block Data

del ¢ ||l

del ¢ |

b) Fully Associative Cache

Hit

Address Tag

‘ Index | offset ‘

]

V Tag Block Data

V Tag Block Data

V Tag Block Data

V Tag Block Data

(e e e e
\ \\ C @P
AN N
. . Qs H 3 ¥ 1 v
c) Set Associative Cache it \ o/
Data
kai.huang@tum 34 T

What Happens on a Cache Miss?

Cache sends a miss signal to stall the processor

Decide which cache block to allocate/replace
o One choice only when the cache is directly mapped
o Multiple choices for set-associative or fully-associative cache

Transfer the block from lower level memory to this cache
o Set the valid bit and the tag field from the upper address bits

If block to be replaced is modified then write it back
o Modified block is moved into a Write Buffer
o Otherwise, block to be replaced can be simply discarded

Restart the instruction that caused the cache miss
Miss Penalty: clock cycles to process a cache miss

11/28/2013 kai.huang@tum 35 T

Replacement Policy

= Which block to be replaced on a cache miss?
= No selection alternatives for direct-mapped caches
= m blocks per set to choose from for associative caches

= Random replacement
o Candidate blocks are randomly selected

o One counter for all sets (0 to m —1): incremented on every
cycle

o On a cache miss replace block specified by counter
" First In First Out (FIFO) replacement
o Replace oldest block in set

o One counter per set (0 to m — 1): specifies oldest block to
replace

o Counter is incremented on a cache miss

& 11/28/2013 kai.huang@tum 36 TN

Replacement Policy — cont’d
= |east Recently Used (LRU)

o Replace block that has been unused for the longest time

o Order blocks within a set from least to most recently used
o Update ordering of blocks on each cache hit

o With m blocks per set, there are m! possible permutations

" Pure LRU is too costly to implement when m > 2
o m =2, there are 2 permutations only (a single bit is needed)
o m =4, there are 4! = 24 possible permutations

o LRU approximation are used in practice
" Forlarge m >4,

Random replacement can be as effective as LRU

Eij 11/28/2013 kai.huang@tum 37 m

Write Policy

= Write Through:
o Writes update cache and lower-level memory
o Cache control bit: only a Valid bit is needed
o Memory always has latest data, which simplifies data coherency
o Can always discard cached data when a block is replaced
= Write Back:
o Writes update cache only
Cache control bits: Valid and Modified bits are required
Modified cached data is written back to memory when replaced

Multiple writes to a cache block require only one write to
memory

o O O

o Uses less memory bandwidth than write-through and less power
o However, more complex to implement than write through

& 11/28/2013 kai.huang@tum 38 TN

Outline

= |/O
o PWM, GPIO, DAC, ADC
o Interfacing I/O

E:j 11/28/2013 kai.huang@tum S8 m

The Big Picture

= Since 1946 all computers have had 5 components

Control unit coordinates

Input unit accepts information:
eHuman operators,
eElectromechanical devices

. . 2Othercomputers
various actions:
eInput, Processor
*Output Input
eProcessing Control
Memory
Datapath
Output Output unit sends

Datapath: results of processing:
ethe part of the central Stores information: eTo a monitor display,

processing unit (CPU)
that does the actual
computations

(& 11/28/2013

e|nstructions,

eData

kai.huang@tum

eTo a printer

40 N

&

Examples of 1/0 Devices

= Timers

WatchDogs

Pulse Width Modulators —

(PWM)

Universal Asynchronous
Receiver Transmitter

(UART)

Inter Integrated Circuit

(12C)

11/28/2013

—»

processor SK8 ROM
80C51 (87C552 8KS8
15 - vector SO M)
interrupt 256 x 8 RAM
timer O (16 bit) A/DC
timer 1 (16 bit) 10 - bit
timer 2 PWM
(16 bit) UART
watchdog (T3) I°C
parallel ports | through :

kai.huang@tum

Philips 83C552:

8 bit-8051 based microcontroller

¢ 88 08 88 ¢

Wit 4

41 N

L

Pulse Width Modulation (PWM)

= Deliver variable amounts
of power to external e —
hardware (e.g. LED |
brightness, motor driver)

ol
=~

" Duty cycle: proportion of
cycle time where voltage is

nigh

" Programming through

PWM interface

B 11/28/2013 kai.huang@tum 42 T

L

PWM cont‘d

= PWM with high frequencies
(10-50kHz) to approximate
signals A

I

" Timer is configured to reload
with fixed frequency (PWM

frequency)

to a value that is a percentage

il

= Qutput Compare register is set Jﬂﬂ

of the timer reload value (duty

;

cycle)

= Qutputis set low when counter
reaches Output Compare value

11/28/2013 kai.huang@tum

http //www falraudlo de

43

General Purpose 10 (GPIO)

General Purpose 10 (GPIO) can be
configured as digital input or output

Digital output:

Voltage of a pin can be set to high
(VCC) or low (0OV) by setting a bitin a
register

Digital input:

State of pin (high or low) can be read
by reading a bit in a register

What state does the pin have when
switch is open?

—>floating (high-impedance/tri-stated)

11/28/2013 kai.huang@tum

44

GPIO cont‘d

" Pull-up resistor is
needed for switch-
open-state

= Most microcontrollers
offer configurable pull-
up and/or pull-down
resistors

(& 11/28/2013 kai.huang@tum

< GPIO

Voo

45 N

L

Analog-to-Digital Converter (ADC)

" Encodesinput

ref number of most
A1) = significant ‘1’ as
Y - an unsigned
DR*§E;>_$, o number, e.g.
aret | |2 S |—= Digital “1111”->“100",
2V | Ri= h § |- outputs “0111” -> 11011,,’
4 ref ::=>% S wo (0011 010"
v R%>% “0001” -> “001”,
aret] T “0000” -> “000”
|r Comparators (oriority
- encoder)

B 11/28/2013 kai.huang@tum 46 T

| 11/28/2013 kai.huang@tum

v -t

Digital-Analog Converter (DAC)

" Current Scaling: Binary-weighted resistor DAC

implementation

L 9 ®

> > >
- Iy ° I\ ° Iy) ° Iny
R 2R AR oN-1R
| | |

Rp = K(R/2)

o

(& 11/28/2013

kai.huang@tum

48

DAC Example

1 _00045 ______________

o
~
Ul
o

Analog Output Voltage
o
o
o
o

0

60 001 010 011 100 101 110 111

-

Digital Input Code

11/28/2013

kai.huang@tum

= Example of a 3-
bit DAC with
normalized
output voltage

49 N

Outline

= |/O

o Interfacing I/O: polling vs. interrupt

E:j 11/28/2013 kai.huang@tum 50 m

Interfacing 1/O Devices to Processor

= |/O Devices are mapped in the

address space of Computation
Components (CC), i.e., CCs
communicate with 1/O devices

Memory Map
I/O device 1

I/O device 2

simply by reading/writing from/to

memory cells.

= Two general methods for access
o Polling - includes, a kind of busy-wait

loop

o Interrupts - using interrupt line of CC
to provide service to devices

Local Mem

11/28/2013 kai.huang@tum 51 i

L

Polling: Busy-Wait Interface

slave

Status Register

Ctrl. Register

master
data/address
Processor
= Continuous polling .

While (!device ready) {

Check device

}
= Periodic polling

11/28/2013

Data Register

|/O device

Issues:
o MASTER is tied up in

communication with device until
|/O operation is done

o No other work can be accomplished

by MASTER

o Typically one MASTER in system,

but many I/O devices

o Only really useful if devices are fast

* No time consuming context switches

kai.huang@tum 52 m

Interrupt

slave
master :
L Intr. request Status Register
Ctrl. Register
Processor data/address g.
Intr. ack Data Register
|/O device
" Procedure = Key observations:
© ;A{Peenr,lilc{r? gﬁ‘?'nc,f’e prie‘iss:v'ﬁ‘jTiER o MASTER is free to do something
sent PLSIg else until attention is needed
o MASTER is “forced” to suspend its O |mpr_0Ves utilization of MASTER,
current task leading to a much better
* Interrupts can be ignored (masked) response

when critical task is executed |/O d h |
o MASTER acknowledges interrupt © > tan proceed asynchronously

and jumps to interrupt service o Time consuming context

routine switches

o When finished control is returned
to the interrupted task

(& 11/28/2013 kai.huang@tum 53 i

Polling vs. Interrupt

Polling

" Pros

o Short latencies (low number
of 10s)

o Many events do not block the
normal execution of the
program

= Cons
o Most polls are unnecessary
o High CPU usage

o Reaction time depends on
number of 10s

11/28/2013

kai.huang@tum 54

Interrupt

" Pros

o Processor resources are only
used when needed

= Cons

o Program execution is
interrupted in a non-
deterministic manner

