
Kai Huang

Embedded Hardware (2)

 Digging into the TV's menu system, he had noticed that an
option called "collection of watching info" had been
switched on by default, he said.

 After switching it off, he had been surprised to find
evidence that unencrypted details about each channel
change had still been transmitted to LG's computer servers,
but this time a flag in the data had been changed from "1"
to "0" to indicate the user had opted out.

11/28/2013 kai.huang@tum 2

Your Smart TV is Spying on You

http://www.bbc.co.uk/news/technology-25018225

 Processor (recap)

 Memory

 I/O

11/28/2013 kai.huang@tum 3

Outline

11/28/2013 kai.huang@tum 4

Why Implementation Alternatives?

 Trade-off between Flexibility and
Performance/Power Efficiency

 Processor (recap)

 Memory

o Basics

o Memory Hierarchy

o Cache

 I/O

11/28/2013 kai.huang@tum 5

Outline

 Since 1946 all computers have had 5 components

11/28/2013 kai.huang@tum 6

The Big Picture

Control

Datapath

Memory

Processor

Input

Output

Input unit accepts information:
•Human operators,
•Electromechanical devices
•Other computers

Output unit sends
results of processing:
•To a monitor display,
•To a printer

Datapath:
•the part of the central
processing unit (CPU)
that does the actual
computations

Control unit coordinates
various actions:
•Input,
•Output
•Processing

 Stores information:
•Instructions,
•Data

Random Access Memory (RAM)

 Large arrays of storage cells

 Volatile memory

o Hold the stored data as long as it is powered on

 Random Access

o Access time is practically the same to any data on a RAM chip

 Chip Select (CS) control signal

o Select RAM chip to read/write

 Read/Write (R/W) control signal

o Specifies memory operation

 2n × m RAM chip: n-bit address and m-bit data

11/28/2013 kai.huang@tum 7

What Is Memory?

RAM

Address

Data

CS R/W

n

m

 Row decoder

o Select row to read/write

 Column decoder

o Select column to read/write

 Cell Matrix

o 2D array of tiny memory cells

 Sense/Write amplifiers

o Sense & amplify data on read

o Drive bit line with data in on write

 Same data lines are used for data in/out

Typical Memory Structure

R
o

w
 a

d
d

re
ss

10

. . .

. .
 . 1024 × 1024

Cell Matrix

R
o

w
 D

ec
o

d
er

Sense/write amplifiers

Column Decoder

. . .

Column address

10

Data

R / W

11/28/2013 8 kai.huang@tum

wordline
311

10

2:4

Decoder

Address

01

00

stored

bit = 0
wordline

2

wordline
1

wordline
0

stored

bit = 1

stored

bit = 0

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

bitline
2

bitline
1

bitline
0

Data
2

Data
1

Data
0

2

Memory Arrays

11/28/2013 9 kai.huang@tum

 4Kbytes …

11/28/2013 kai.huang@tum 10

Memory Board at Early 1970’s or Late 1960’s

Static RAM Storage Cell
Static RAM (SRAM): fast but expensive RAM

 6-Transistor cell with no static current

 Typically used for caches

 Provides fast access time

 Cell Implementation:

o Cross-coupled inverters store bit

o Two pass transistors

o Row decoder selects the word line

o Pass transistors enable the cell to be read and written

11/28/2013 11 kai.huang@tum

Dynamic RAM Storage Cell
Dynamic RAM (DRAM): slow, cheap, and dense memory

 Typical choice for main memory

 Cell Implementation:

o 1-Transistor cell (pass transistor)

o Trench capacitor (stores bit)

 Bit is stored as a charge on capacitor

 Must be refreshed periodically

o Because of leakage of charge from tiny capacitor

 Refreshing for all memory rows

o Reading each row and writing it back to restore the charge

11/28/2013 12 kai.huang@tum

wordline

bitline

Capacitor

Pass Transistor

DRAM Refresh Cycles

 Time

Threshold
voltage

 0 Stored

 1 Written Refreshed Refreshed Refreshed

 Refresh Cycle

Voltage
for 1

Voltage
for 0

 Refresh cycle is about tens of milliseconds

 Refreshing is done for the entire memory

 Each row is read and written back to restore the charge

 Some of the memory bandwidth is lost to refresh cycles

11/28/2013 13 kai.huang@tum

Loss of Bandwidth to Refresh Cycles
 Example:

o A 256 Mb DRAM chip

o Organized internally as a 16K  16K cell matrix

o Rows must be refreshed at least once every 50 ms

o Refreshing a row takes 100 ns

o What fraction of the memory bandwidth is lost to refresh
cycles?

 Solution:

o Refreshing all 16K rows takes: 16  1024  100 ns = 1.64 ms

o Loss of 1.64 ms every 50 ms

o Fraction of lost memory bandwidth = 1.64 / 50 = 3.3%

11/28/2013 14 kai.huang@tum

 Processor (recap)

 Memory

o Basics

o Memory Hierarchy

o Cache

 I/O

11/28/2013 kai.huang@tum 15

Outline

Processor-Memory Performance Gap

 1980 – No cache in microprocessor

 1995 – Two-level cache on microprocessor

CPU: 55% per year

DRAM: 7% per year
1

10

100

1000
1

9
8

0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9
8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

1
9

8
2

Processor-Memory
Performance Gap:
(grows 50% per year)

Pe
rf

o
rm

an
ce

“Moore’s Law”

11/28/2013 16 kai.huang@tum

(Parallel) Performance Keeps Increasing

Hennessy/Patterson: Computer Architecture, 5th ed., 2011]

Copyright © 2011, Elsevier Inc. All rights Reserved.

11/28/2013 17 kai.huang@tum

 Widening speed gap between CPU and main memory

o Processor operation takes less than 1 ns

o Main memory requires more than 50 ns to access

 Each instruction involves at least one memory access

o One memory access to fetch the instruction

o A second memory access for load and store instructions

 Memory bandwidth limits the instruction execution rate

 Cache memory can help bridge the CPU-memory gap

 Cache memory is small in size but fast

11/28/2013 kai.huang@tum 18

The Need for a Memory Hierarchy

Typical Memory Hierarchy
 Registers are at the top of the hierarchy

o Typical size < 1 KB
o Access time < 0.5 ns

 Level 1 Cache (8 – 64 KB)
o Access time: 0.5 – 1 ns

 L2 Cache (512KB – 8MB)
o Access time: 2 – 10 ns

 Main Memory (1 – 2 GB)
o Access time: 50 – 70 ns

 Disk Storage (> 200 GB)
o Access time: milliseconds

Microprocessor

Registers

L1 Cache

L2 Cache

Memory

Disk, Tape, etc

Memory Bus

I/O Bus

Fa
st

e
r

B
ig

ge
r

11/28/2013 19 kai.huang@tum

 Programs access small portion of their address space

o At any time, only a small set of instructions & data is needed

 Temporal Locality (in time)

o If an item is accessed, probably it will be accessed again soon

o Same loop instructions are fetched each iteration

o Same procedure may be called and executed many times

 Spatial Locality (in space)

o Tendency to access contiguous instructions/data in memory

o Sequential execution of Instructions

o Traversing arrays element by element

11/28/2013 kai.huang@tum 20

Principle of Locality of Reference

What is a Cache Memory ?
 Small and fast (SRAM) memory technology

o Stores the subset of instructions & data currently being accessed

 Used to reduce average access time to memory

 Caches exploit temporal locality by …

o Keeping recently accessed data closer to the processor

 Caches exploit spatial locality by …

o Moving blocks consisting of multiple contiguous words

 Goal is to achieve

o Fast speed of cache memory access

o Balance the cost of the memory system

11/28/2013 21 kai.huang@tum

Cache Memories in the Datapath

Address

Rs

Rt Register

File

Imm26

R
w

A

LU
 r

es
u

lt

B

B

A

Im
m

1
6

R

w

m
u
x

m
u
x

In
st

ru
ct

io
n

m
u
x

m
u
x

Instruction

Cache

 Address

Instruction

Inc

P
C

0

0

m
u
x

A
L
U

N
P

C

Ext

Imm16

Next

PC

PCSrc

Data

Cache

 Address

 Data_in

ALU result

m
u
x

W
ri

te
D

at
a

R
w

Rd

Main Memory

Control

Data
Interface between
CPU and memory

ID = Decode and
Register Fetch

EX = Execute and
Calculate Address

IF = Instruction Fetch MEM = Memory
Access

WB = Write
Back

11/28/2013 22 kai.huang@tum

Almost Everything is a Cache !
 In computer architecture, almost everything is a cache!

 Registers: a cache on variables – software managed

 First-level cache: a cache on second-level cache

 Second-level cache: a cache on memory

 Memory: a cache on hard disk

o Stores recent programs and their data

o Hard disk can be viewed as an extension to main memory

 Branch target and prediction buffer

o Cache on branch target and prediction information

11/28/2013 23 kai.huang@tum

 Processor (recap)

 Memory

o Basics

o Memory Hierarchy

o Cache

 I/O

11/28/2013 kai.huang@tum 24

Outline

 Q1: Where can a block be placed in a cache?
o Block placement

o Direct Mapped, Set Associative, Fully Associative

 Q2: How is a block found in a cache?
o Block identification/addressing

o Block address, tag, index

 Q3: Which block should be replaced on a miss?
o Block replacement

o FIFO, Random, LRU

 Q4: What happens on a write?
o Write strategy

o Write Back or Write Through (with Write Buffer)

Four Basic Questions on Caches

11/28/2013 25 kai.huang@tum

Block Placement: Direct Mapped
 Block: unit of data transfer between cache and memory
 Direct Mapped Cache:

o A block can be placed in exactly one location in the cache

0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1

0
0

0
0

0

0
0

0
0

1

0
0

0
1

0

0
0

0
1

1

0
0

1
0

0

0
0

1
0

1

0
0

1
1

0

0
0

1
1

1

0
1

0
0

0

0
1

0
0

1

0
1

0
1

0

0
1

0
1

1

0
1

1
0

0

0
1

1
0

1

0
1

1
1

0

0
1

1
1

1

1
0

0
0

0

1
0

0
0

1

1
0

0
1

0

1
0

0
1

1

1
0

1
0

0

1
0

1
0

1

1
0

1
1

0

1
0

1
1

1

1
1

0
0

0

1
1

0
0

1

1
1

0
1

0

1
1

0
1

1

1
1

1
0

0

1
1

1
0

1

1
1

1
1

0

1
1

1
1

1

In this example:

Cache index =
least significant 3 bits of
Memory address

C
ac

h
e

M
ai

n

M
em

o
ry

11/28/2013 26 kai.huang@tum

 A memory address is divided into

o Block address: identifies block in memory

o Block offset: to access bytes within a block

 A block address is further divided into

o Index: used for direct cache access

o Tag: most-significant bits of block address

 Index = Block Address mod Cache Blocks

 Tag must be stored also inside cache

o For block identification

 A valid bit is also required to indicate

o Whether a cache block is valid or not

Direct-Mapped Cache

V Tag Block Data

=

Hit

Data

Tag Index offset

Block Address

11/28/2013 27 kai.huang@tum

 Cache hit: block is stored inside cache
o Index is used to access cache block

o Address tag is compared against stored tag

o If equal and cache block is valid then hit

o Otherwise: cache miss

 If number of cache blocks is 2n

o n bits are used for the cache index

 If number of bytes in a block is 2b

o b bits are used for the block offset

 If 32 bits are used for an address
o 32 – n – b bits are used for the tag

 Cache data size = 2n+b bytes

Direct Mapped Cache – cont’d

V Tag Block Data

=

Hit

Data

Tag Index offset

Block Address

11/28/2013 28 kai.huang@tum

 Example
o Consider a direct-mapped cache with 256 blocks
o Block size = 16 bytes
o Compute tag, index, and byte offset of address: 0x01FFF8AC

 Solution
o 32-bit address is divided into:

• 4-bit byte offset field, because block size = 24 = 16 bytes
• 8-bit cache index, because there are 28 = 256 blocks in cache
• 20-bit tag field

o Byte offset = 0xC = 12 (least significant 4 bits of address)
o Cache index = 0x8A = 138 (next lower 8 bits of address)
o Tag = 0x01FFF (upper 20 bits of address)

Mapping an Address to a Cache Block

Tag Index offset

4 8 20

Block Address

11/28/2013 29 kai.huang@tum

 Consider a small direct-mapped cache with 32 blocks
o Cache is initially empty, Block size = 16 bytes
o The following memory addresses (in decimal) are referenced:
 1000, 1004, 1008, 2548, 2552, 2556.
o Map addresses to cache blocks and indicate whether hit or miss

 Solution:
o 1000 = 0x3E8 cache index = 0x1E Miss (first access)
o 1004 = 0x3EC cache index = 0x1E Hit
o 1008 = 0x3F0 cache index = 0x1F Miss (first access)
o 2548 = 0x9F4 cache index = 0x1F Miss (different tag)
o 2552 = 0x9F8 cache index = 0x1F Hit
o 2556 = 0x9FC cache index = 0x1F Hit

Example on Cache Placement & Misses

Tag Index offset

4 5 23

11/28/2013 30 kai.huang@tum

Fully Associative Cache
 A block can be placed anywhere in cache  no

indexing
 If m blocks exist then

o m comparators are needed to match tag
o Cache data size = m  2b bytes

m-way associative

Address

Tag offset

Data Hit

= = = =

V Tag Block Data V Tag Block Data V Tag Block Data V Tag Block Data

mux

11/28/2013 31 kai.huang@tum

 A set is a group of blocks that can be indexed

 A block is first mapped onto a set

o Set index = Block address mod Number of sets in cache

 If there are m blocks in a set (m-way set associative) then

o m tags are checked in parallel using m comparators

 If 2n sets exist then set index consists of n bits

 Cache data size = m  2n+b bytes (with 2b bytes per block)

o Without counting tags and valid bits

 A direct-mapped cache has one block per set (m = 1)

 A fully-associative cache has one set (2n = 1 or n = 0)

Set-Associative Cache

11/28/2013 32 kai.huang@tum

Set-Associative Cache Diagram

m-way set-associative

V Tag Block Data V Tag Block Data V Tag Block Data V Tag Block Data

Address Tag Index offset

Data

= = = =

mux
Hit

11/28/2013 33 kai.huang@tum

11/28/2013 kai.huang@tum 34

Comparison

a) Direct Mapped Cache
c) Set Associative Cache

b) Fully Associative Cache

 Cache sends a miss signal to stall the processor
 Decide which cache block to allocate/replace

o One choice only when the cache is directly mapped
o Multiple choices for set-associative or fully-associative cache

 Transfer the block from lower level memory to this cache
o Set the valid bit and the tag field from the upper address bits

 If block to be replaced is modified then write it back
o Modified block is moved into a Write Buffer
o Otherwise, block to be replaced can be simply discarded

 Restart the instruction that caused the cache miss
 Miss Penalty: clock cycles to process a cache miss

What Happens on a Cache Miss?

11/28/2013 35 kai.huang@tum

 Which block to be replaced on a cache miss?
 No selection alternatives for direct-mapped caches
 m blocks per set to choose from for associative caches
 Random replacement

o Candidate blocks are randomly selected
o One counter for all sets (0 to m – 1): incremented on every

cycle
o On a cache miss replace block specified by counter

 First In First Out (FIFO) replacement
o Replace oldest block in set
o One counter per set (0 to m – 1): specifies oldest block to

replace
o Counter is incremented on a cache miss

Replacement Policy

11/28/2013 36 kai.huang@tum

 Least Recently Used (LRU)

o Replace block that has been unused for the longest time

o Order blocks within a set from least to most recently used

o Update ordering of blocks on each cache hit

o With m blocks per set, there are m! possible permutations

 Pure LRU is too costly to implement when m > 2

o m = 2, there are 2 permutations only (a single bit is needed)

o m = 4, there are 4! = 24 possible permutations

o LRU approximation are used in practice

 For large m > 4,

 Random replacement can be as effective as LRU

Replacement Policy – cont’d

11/28/2013 37 kai.huang@tum

 Write Through:
o Writes update cache and lower-level memory

o Cache control bit: only a Valid bit is needed

o Memory always has latest data, which simplifies data coherency

o Can always discard cached data when a block is replaced

 Write Back:
o Writes update cache only

o Cache control bits: Valid and Modified bits are required

o Modified cached data is written back to memory when replaced

o Multiple writes to a cache block require only one write to
memory

o Uses less memory bandwidth than write-through and less power

o However, more complex to implement than write through

Write Policy

11/28/2013 38 kai.huang@tum

 Processor

 Memory

 I/O

o PWM, GPIO, DAC, ADC

o Interfacing I/O

11/28/2013 kai.huang@tum 39

Outline

 Since 1946 all computers have had 5 components

11/28/2013 kai.huang@tum 40

The Big Picture

Control

Datapath

Memory

Processor

Input

Output

Input unit accepts information:
•Human operators,
•Electromechanical devices
•Other computers

Output unit sends
results of processing:
•To a monitor display,
•To a printer

Datapath:
•the part of the central
processing unit (CPU)
that does the actual
computations

Control unit coordinates
various actions:
•Input,
•Output
•Processing

 Stores information:
•Instructions,
•Data

 Timers

 WatchDogs

 Pulse Width Modulators

 (PWM)

 Universal Asynchronous

 Receiver Transmitter

 (UART)

 Inter Integrated Circuit

 (I2C)

 ...

11/28/2013 kai.huang@tum 41

Examples of I/O Devices

Philips 83C552:
8 bit-8051 based microcontroller

 Deliver variable amounts
of power to external
hardware (e.g. LED
brightness, motor driver)

 Duty cycle: proportion of
cycle time where voltage is
high

 Programming through
PWM interface

Pulse Width Modulation (PWM)

11/28/2013 42 kai.huang@tum

 PWM with high frequencies
(10-50kHz) to approximate
signals

 Timer is configured to reload
with fixed frequency (PWM
frequency)

 Output Compare register is set
to a value that is a percentage
of the timer reload value (duty
cycle)

 Output is set low when counter
reaches Output Compare value

PWM cont‘d

http://www.fairaudio.de

11/28/2013 43 kai.huang@tum

 General Purpose IO (GPIO) can be
configured as digital input or output

 Digital output:
Voltage of a pin can be set to high
(VCC) or low (0V) by setting a bit in a
register

 Digital input:
State of pin (high or low) can be read
by reading a bit in a register

 What state does the pin have when
switch is open?

 floating (high-impedance/tri-stated)

General Purpose IO (GPIO)

11/28/2013 44 kai.huang@tum

 Pull-up resistor is
needed for switch-
open-state

 Most microcontrollers
offer configurable pull-
up and/or pull-down
resistors

GPIO cont‘d

11/28/2013 45 kai.huang@tum

 Encodes input
 number of most
 significant ‘1’ as
 an unsigned
 number, e.g.
 “1111” -> “100”,
 “0111” -> “011”,
 “0011” -> “010”,
 “0001” -> “001”,
 “0000” -> “000”
 (priority

encoder)

11/28/2013 kai.huang@tum 46

Analog-to-Digital Converter (ADC)

11/28/2013 kai.huang@tum 47

ADC: Successive Approximation

 Current Scaling: Binary-weighted resistor DAC
implementation

11/28/2013 kai.huang@tum 48

Digital-Analog Converter (DAC)

 Example of a 3-
bit DAC with
normalized
output voltage

11/28/2013 kai.huang@tum 49

DAC Example

 Processor

 Memory

 I/O

o PWM, GPIO, DAC, ADC

o Interfacing I/O: polling vs. interrupt

11/28/2013 kai.huang@tum 50

Outline

 I/O Devices are mapped in the
address space of Computation
Components (CC), i.e., CCs
communicate with I/O devices
simply by reading/writing from/to
memory cells.

 Two general methods for access
o Polling - includes, a kind of busy-wait

loop
o Interrupts - using interrupt line of CC

to provide service to devices

11/28/2013 kai.huang@tum 51

Interfacing I/O Devices to Processor

11/28/2013 kai.huang@tum 52

 Continuous polling
While (!device ready) {

 Check device

}

 Periodic polling

 Issues:
o MASTER is tied up in

communication with device until
I/O operation is done

o No other work can be accomplished
by MASTER

o Typically one MASTER in system,
but many I/O devices

o Only really useful if devices are fast
• No time consuming context switches

Polling: Busy-Wait Interface

Processor

Status Register

Ctrl. Register

Data Register

I/O device

master

slave

data/address

11/28/2013 kai.huang@tum 53

 Procedure
o When I/O device needs MASTER

attention, an interrupt signal is
sent

o MASTER is “forced” to suspend its
current task

• Interrupts can be ignored (masked)
when critical task is executed

o MASTER acknowledges interrupt
and jumps to interrupt service
routine

o When finished control is returned
to the interrupted task

 Key observations:
o MASTER is free to do something

else until attention is needed
o Improves utilization of MASTER,

leading to a much better
response

o I/Os can proceed asynchronously
o Time consuming context

switches

Interrupt

Processor

Status Register

Ctrl. Register

Data Register

I/O device

master
slave

data/address

Intr. ack

Intr. request

Polling vs. Interrupt

Polling

 Pros
o Short latencies (low number

of IOs)

o Many events do not block the
normal execution of the
program

 Cons
o Most polls are unnecessary

o High CPU usage

o Reaction time depends on
number of IOs

Interrupt

 Pros
o Processor resources are only

used when needed

 Cons
o Program execution is

interrupted in a non-
deterministic manner

11/28/2013 kai.huang@tum 54

