
Kai Huang

Embedded Hardware (2)

 Digging into the TV's menu system, he had noticed that an
option called "collection of watching info" had been
switched on by default, he said.

 After switching it off, he had been surprised to find
evidence that unencrypted details about each channel
change had still been transmitted to LG's computer servers,
but this time a flag in the data had been changed from "1"
to "0" to indicate the user had opted out.

11/28/2013 kai.huang@tum 2

Your Smart TV is Spying on You

http://www.bbc.co.uk/news/technology-25018225

 Processor (recap)

 Memory

 I/O

11/28/2013 kai.huang@tum 3

Outline

11/28/2013 kai.huang@tum 4

Why Implementation Alternatives?

 Trade-off between Flexibility and
Performance/Power Efficiency

 Processor (recap)

 Memory

o Basics

o Memory Hierarchy

o Cache

 I/O

11/28/2013 kai.huang@tum 5

Outline

 Since 1946 all computers have had 5 components

11/28/2013 kai.huang@tum 6

The Big Picture

Control

Datapath

Memory

Processor

Input

Output

Input unit accepts information:
•Human operators,
•Electromechanical devices
•Other computers

Output unit sends
results of processing:
•To a monitor display,
•To a printer

Datapath:
•the part of the central
processing unit (CPU)
that does the actual
computations

Control unit coordinates
various actions:
•Input,
•Output
•Processing

 Stores information:
•Instructions,
•Data

Random Access Memory (RAM)

 Large arrays of storage cells

 Volatile memory

o Hold the stored data as long as it is powered on

 Random Access

o Access time is practically the same to any data on a RAM chip

 Chip Select (CS) control signal

o Select RAM chip to read/write

 Read/Write (R/W) control signal

o Specifies memory operation

 2n × m RAM chip: n-bit address and m-bit data

11/28/2013 kai.huang@tum 7

What Is Memory?

RAM

Address

Data

CS R/W

n

m

 Row decoder

o Select row to read/write

 Column decoder

o Select column to read/write

 Cell Matrix

o 2D array of tiny memory cells

 Sense/Write amplifiers

o Sense & amplify data on read

o Drive bit line with data in on write

 Same data lines are used for data in/out

Typical Memory Structure

R
o

w
 a

d
d

re
ss

10

. . .

. .
 . 1024 × 1024

Cell Matrix

R
o

w
 D

ec
o

d
er

Sense/write amplifiers

Column Decoder

. . .

Column address

10

Data

R / W

11/28/2013 8 kai.huang@tum

wordline
311

10

2:4

Decoder

Address

01

00

stored

bit = 0
wordline

2

wordline
1

wordline
0

stored

bit = 1

stored

bit = 0

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

bitline
2

bitline
1

bitline
0

Data
2

Data
1

Data
0

2

Memory Arrays

11/28/2013 9 kai.huang@tum

 4Kbytes …

11/28/2013 kai.huang@tum 10

Memory Board at Early 1970’s or Late 1960’s

Static RAM Storage Cell
Static RAM (SRAM): fast but expensive RAM

 6-Transistor cell with no static current

 Typically used for caches

 Provides fast access time

 Cell Implementation:

o Cross-coupled inverters store bit

o Two pass transistors

o Row decoder selects the word line

o Pass transistors enable the cell to be read and written

11/28/2013 11 kai.huang@tum

Dynamic RAM Storage Cell
Dynamic RAM (DRAM): slow, cheap, and dense memory

 Typical choice for main memory

 Cell Implementation:

o 1-Transistor cell (pass transistor)

o Trench capacitor (stores bit)

 Bit is stored as a charge on capacitor

 Must be refreshed periodically

o Because of leakage of charge from tiny capacitor

 Refreshing for all memory rows

o Reading each row and writing it back to restore the charge

11/28/2013 12 kai.huang@tum

wordline

bitline

Capacitor

Pass Transistor

DRAM Refresh Cycles

 Time

Threshold
voltage

 0 Stored

 1 Written Refreshed Refreshed Refreshed

 Refresh Cycle

Voltage
for 1

Voltage
for 0

 Refresh cycle is about tens of milliseconds

 Refreshing is done for the entire memory

 Each row is read and written back to restore the charge

 Some of the memory bandwidth is lost to refresh cycles

11/28/2013 13 kai.huang@tum

Loss of Bandwidth to Refresh Cycles
 Example:

o A 256 Mb DRAM chip

o Organized internally as a 16K 16K cell matrix

o Rows must be refreshed at least once every 50 ms

o Refreshing a row takes 100 ns

o What fraction of the memory bandwidth is lost to refresh
cycles?

 Solution:

o Refreshing all 16K rows takes: 16 1024 100 ns = 1.64 ms

o Loss of 1.64 ms every 50 ms

o Fraction of lost memory bandwidth = 1.64 / 50 = 3.3%

11/28/2013 14 kai.huang@tum

 Processor (recap)

 Memory

o Basics

o Memory Hierarchy

o Cache

 I/O

11/28/2013 kai.huang@tum 15

Outline

Processor-Memory Performance Gap

 1980 – No cache in microprocessor

 1995 – Two-level cache on microprocessor

CPU: 55% per year

DRAM: 7% per year
1

10

100

1000
1

9
8

0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9
8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

1
9

8
2

Processor-Memory
Performance Gap:
(grows 50% per year)

Pe
rf

o
rm

an
ce

“Moore’s Law”

11/28/2013 16 kai.huang@tum

(Parallel) Performance Keeps Increasing

Hennessy/Patterson: Computer Architecture, 5th ed., 2011]

Copyright © 2011, Elsevier Inc. All rights Reserved.

11/28/2013 17 kai.huang@tum

 Widening speed gap between CPU and main memory

o Processor operation takes less than 1 ns

o Main memory requires more than 50 ns to access

 Each instruction involves at least one memory access

o One memory access to fetch the instruction

o A second memory access for load and store instructions

 Memory bandwidth limits the instruction execution rate

 Cache memory can help bridge the CPU-memory gap

 Cache memory is small in size but fast

11/28/2013 kai.huang@tum 18

The Need for a Memory Hierarchy

Typical Memory Hierarchy
 Registers are at the top of the hierarchy

o Typical size < 1 KB
o Access time < 0.5 ns

 Level 1 Cache (8 – 64 KB)
o Access time: 0.5 – 1 ns

 L2 Cache (512KB – 8MB)
o Access time: 2 – 10 ns

 Main Memory (1 – 2 GB)
o Access time: 50 – 70 ns

 Disk Storage (> 200 GB)
o Access time: milliseconds

Microprocessor

Registers

L1 Cache

L2 Cache

Memory

Disk, Tape, etc

Memory Bus

I/O Bus

Fa
st

e
r

B
ig

ge
r

11/28/2013 19 kai.huang@tum

 Programs access small portion of their address space

o At any time, only a small set of instructions & data is needed

 Temporal Locality (in time)

o If an item is accessed, probably it will be accessed again soon

o Same loop instructions are fetched each iteration

o Same procedure may be called and executed many times

 Spatial Locality (in space)

o Tendency to access contiguous instructions/data in memory

o Sequential execution of Instructions

o Traversing arrays element by element

11/28/2013 kai.huang@tum 20

Principle of Locality of Reference

What is a Cache Memory ?
 Small and fast (SRAM) memory technology

o Stores the subset of instructions & data currently being accessed

 Used to reduce average access time to memory

 Caches exploit temporal locality by …

o Keeping recently accessed data closer to the processor

 Caches exploit spatial locality by …

o Moving blocks consisting of multiple contiguous words

 Goal is to achieve

o Fast speed of cache memory access

o Balance the cost of the memory system

11/28/2013 21 kai.huang@tum

Cache Memories in the Datapath

Address

Rs

Rt Register

File

Imm26

R
w

A

LU
 r

es
u

lt

B

B

A

Im
m

1
6

R

w

m
u
x

m
u
x

In
st

ru
ct

io
n

m
u
x

m
u
x

Instruction

Cache

 Address

Instruction

Inc

P
C

0

0

m
u
x

A
L
U

N
P

C

Ext

Imm16

Next

PC

PCSrc

Data

Cache

 Address

 Data_in

ALU result

m
u
x

W
ri

te
D

at
a

R
w

Rd

Main Memory

Control

Data
Interface between
CPU and memory

ID = Decode and
Register Fetch

EX = Execute and
Calculate Address

IF = Instruction Fetch MEM = Memory
Access

WB = Write
Back

11/28/2013 22 kai.huang@tum

Almost Everything is a Cache !
 In computer architecture, almost everything is a cache!

 Registers: a cache on variables – software managed

 First-level cache: a cache on second-level cache

 Second-level cache: a cache on memory

 Memory: a cache on hard disk

o Stores recent programs and their data

o Hard disk can be viewed as an extension to main memory

 Branch target and prediction buffer

o Cache on branch target and prediction information

11/28/2013 23 kai.huang@tum

 Processor (recap)

 Memory

o Basics

o Memory Hierarchy

o Cache

 I/O

11/28/2013 kai.huang@tum 24

Outline

 Q1: Where can a block be placed in a cache?
o Block placement

o Direct Mapped, Set Associative, Fully Associative

 Q2: How is a block found in a cache?
o Block identification/addressing

o Block address, tag, index

 Q3: Which block should be replaced on a miss?
o Block replacement

o FIFO, Random, LRU

 Q4: What happens on a write?
o Write strategy

o Write Back or Write Through (with Write Buffer)

Four Basic Questions on Caches

11/28/2013 25 kai.huang@tum

Block Placement: Direct Mapped
 Block: unit of data transfer between cache and memory
 Direct Mapped Cache:

o A block can be placed in exactly one location in the cache

0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1

0
0

0
0

0

0
0

0
0

1

0
0

0
1

0

0
0

0
1

1

0
0

1
0

0

0
0

1
0

1

0
0

1
1

0

0
0

1
1

1

0
1

0
0

0

0
1

0
0

1

0
1

0
1

0

0
1

0
1

1

0
1

1
0

0

0
1

1
0

1

0
1

1
1

0

0
1

1
1

1

1
0

0
0

0

1
0

0
0

1

1
0

0
1

0

1
0

0
1

1

1
0

1
0

0

1
0

1
0

1

1
0

1
1

0

1
0

1
1

1

1
1

0
0

0

1
1

0
0

1

1
1

0
1

0

1
1

0
1

1

1
1

1
0

0

1
1

1
0

1

1
1

1
1

0

1
1

1
1

1

In this example:

Cache index =
least significant 3 bits of
Memory address

C
ac

h
e

M
ai

n

M
em

o
ry

11/28/2013 26 kai.huang@tum

 A memory address is divided into

o Block address: identifies block in memory

o Block offset: to access bytes within a block

 A block address is further divided into

o Index: used for direct cache access

o Tag: most-significant bits of block address

 Index = Block Address mod Cache Blocks

 Tag must be stored also inside cache

o For block identification

 A valid bit is also required to indicate

o Whether a cache block is valid or not

Direct-Mapped Cache

V Tag Block Data

=

Hit

Data

Tag Index offset

Block Address

11/28/2013 27 kai.huang@tum

 Cache hit: block is stored inside cache
o Index is used to access cache block

o Address tag is compared against stored tag

o If equal and cache block is valid then hit

o Otherwise: cache miss

 If number of cache blocks is 2n

o n bits are used for the cache index

 If number of bytes in a block is 2b

o b bits are used for the block offset

 If 32 bits are used for an address
o 32 – n – b bits are used for the tag

 Cache data size = 2n+b bytes

Direct Mapped Cache – cont’d

V Tag Block Data

=

Hit

Data

Tag Index offset

Block Address

11/28/2013 28 kai.huang@tum

 Example
o Consider a direct-mapped cache with 256 blocks
o Block size = 16 bytes
o Compute tag, index, and byte offset of address: 0x01FFF8AC

 Solution
o 32-bit address is divided into:

• 4-bit byte offset field, because block size = 24 = 16 bytes
• 8-bit cache index, because there are 28 = 256 blocks in cache
• 20-bit tag field

o Byte offset = 0xC = 12 (least significant 4 bits of address)
o Cache index = 0x8A = 138 (next lower 8 bits of address)
o Tag = 0x01FFF (upper 20 bits of address)

Mapping an Address to a Cache Block

Tag Index offset

4 8 20

Block Address

11/28/2013 29 kai.huang@tum

 Consider a small direct-mapped cache with 32 blocks
o Cache is initially empty, Block size = 16 bytes
o The following memory addresses (in decimal) are referenced:
 1000, 1004, 1008, 2548, 2552, 2556.
o Map addresses to cache blocks and indicate whether hit or miss

 Solution:
o 1000 = 0x3E8 cache index = 0x1E Miss (first access)
o 1004 = 0x3EC cache index = 0x1E Hit
o 1008 = 0x3F0 cache index = 0x1F Miss (first access)
o 2548 = 0x9F4 cache index = 0x1F Miss (different tag)
o 2552 = 0x9F8 cache index = 0x1F Hit
o 2556 = 0x9FC cache index = 0x1F Hit

Example on Cache Placement & Misses

Tag Index offset

4 5 23

11/28/2013 30 kai.huang@tum

Fully Associative Cache
 A block can be placed anywhere in cache no

indexing
 If m blocks exist then

o m comparators are needed to match tag
o Cache data size = m 2b bytes

m-way associative

Address

Tag offset

Data Hit

= = = =

V Tag Block Data V Tag Block Data V Tag Block Data V Tag Block Data

mux

11/28/2013 31 kai.huang@tum

 A set is a group of blocks that can be indexed

 A block is first mapped onto a set

o Set index = Block address mod Number of sets in cache

 If there are m blocks in a set (m-way set associative) then

o m tags are checked in parallel using m comparators

 If 2n sets exist then set index consists of n bits

 Cache data size = m 2n+b bytes (with 2b bytes per block)

o Without counting tags and valid bits

 A direct-mapped cache has one block per set (m = 1)

 A fully-associative cache has one set (2n = 1 or n = 0)

Set-Associative Cache

11/28/2013 32 kai.huang@tum

Set-Associative Cache Diagram

m-way set-associative

V Tag Block Data V Tag Block Data V Tag Block Data V Tag Block Data

Address Tag Index offset

Data

= = = =

mux
Hit

11/28/2013 33 kai.huang@tum

11/28/2013 kai.huang@tum 34

Comparison

a) Direct Mapped Cache
c) Set Associative Cache

b) Fully Associative Cache

 Cache sends a miss signal to stall the processor
 Decide which cache block to allocate/replace

o One choice only when the cache is directly mapped
o Multiple choices for set-associative or fully-associative cache

 Transfer the block from lower level memory to this cache
o Set the valid bit and the tag field from the upper address bits

 If block to be replaced is modified then write it back
o Modified block is moved into a Write Buffer
o Otherwise, block to be replaced can be simply discarded

 Restart the instruction that caused the cache miss
 Miss Penalty: clock cycles to process a cache miss

What Happens on a Cache Miss?

11/28/2013 35 kai.huang@tum

 Which block to be replaced on a cache miss?
 No selection alternatives for direct-mapped caches
 m blocks per set to choose from for associative caches
 Random replacement

o Candidate blocks are randomly selected
o One counter for all sets (0 to m – 1): incremented on every

cycle
o On a cache miss replace block specified by counter

 First In First Out (FIFO) replacement
o Replace oldest block in set
o One counter per set (0 to m – 1): specifies oldest block to

replace
o Counter is incremented on a cache miss

Replacement Policy

11/28/2013 36 kai.huang@tum

 Least Recently Used (LRU)

o Replace block that has been unused for the longest time

o Order blocks within a set from least to most recently used

o Update ordering of blocks on each cache hit

o With m blocks per set, there are m! possible permutations

 Pure LRU is too costly to implement when m > 2

o m = 2, there are 2 permutations only (a single bit is needed)

o m = 4, there are 4! = 24 possible permutations

o LRU approximation are used in practice

 For large m > 4,

 Random replacement can be as effective as LRU

Replacement Policy – cont’d

11/28/2013 37 kai.huang@tum

 Write Through:
o Writes update cache and lower-level memory

o Cache control bit: only a Valid bit is needed

o Memory always has latest data, which simplifies data coherency

o Can always discard cached data when a block is replaced

 Write Back:
o Writes update cache only

o Cache control bits: Valid and Modified bits are required

o Modified cached data is written back to memory when replaced

o Multiple writes to a cache block require only one write to
memory

o Uses less memory bandwidth than write-through and less power

o However, more complex to implement than write through

Write Policy

11/28/2013 38 kai.huang@tum

 Processor

 Memory

 I/O

o PWM, GPIO, DAC, ADC

o Interfacing I/O

11/28/2013 kai.huang@tum 39

Outline

 Since 1946 all computers have had 5 components

11/28/2013 kai.huang@tum 40

The Big Picture

Control

Datapath

Memory

Processor

Input

Output

Input unit accepts information:
•Human operators,
•Electromechanical devices
•Other computers

Output unit sends
results of processing:
•To a monitor display,
•To a printer

Datapath:
•the part of the central
processing unit (CPU)
that does the actual
computations

Control unit coordinates
various actions:
•Input,
•Output
•Processing

 Stores information:
•Instructions,
•Data

 Timers

 WatchDogs

 Pulse Width Modulators

 (PWM)

 Universal Asynchronous

 Receiver Transmitter

 (UART)

 Inter Integrated Circuit

 (I2C)

 ...

11/28/2013 kai.huang@tum 41

Examples of I/O Devices

Philips 83C552:
8 bit-8051 based microcontroller

 Deliver variable amounts
of power to external
hardware (e.g. LED
brightness, motor driver)

 Duty cycle: proportion of
cycle time where voltage is
high

 Programming through
PWM interface

Pulse Width Modulation (PWM)

11/28/2013 42 kai.huang@tum

 PWM with high frequencies
(10-50kHz) to approximate
signals

 Timer is configured to reload
with fixed frequency (PWM
frequency)

 Output Compare register is set
to a value that is a percentage
of the timer reload value (duty
cycle)

 Output is set low when counter
reaches Output Compare value

PWM cont‘d

http://www.fairaudio.de

11/28/2013 43 kai.huang@tum

 General Purpose IO (GPIO) can be
configured as digital input or output

 Digital output:
Voltage of a pin can be set to high
(VCC) or low (0V) by setting a bit in a
register

 Digital input:
State of pin (high or low) can be read
by reading a bit in a register

 What state does the pin have when
switch is open?

 floating (high-impedance/tri-stated)

General Purpose IO (GPIO)

11/28/2013 44 kai.huang@tum

 Pull-up resistor is
needed for switch-
open-state

 Most microcontrollers
offer configurable pull-
up and/or pull-down
resistors

GPIO cont‘d

11/28/2013 45 kai.huang@tum

 Encodes input
 number of most
 significant ‘1’ as
 an unsigned
 number, e.g.
 “1111” -> “100”,
 “0111” -> “011”,
 “0011” -> “010”,
 “0001” -> “001”,
 “0000” -> “000”
 (priority

encoder)

11/28/2013 kai.huang@tum 46

Analog-to-Digital Converter (ADC)

11/28/2013 kai.huang@tum 47

ADC: Successive Approximation

 Current Scaling: Binary-weighted resistor DAC
implementation

11/28/2013 kai.huang@tum 48

Digital-Analog Converter (DAC)

 Example of a 3-
bit DAC with
normalized
output voltage

11/28/2013 kai.huang@tum 49

DAC Example

 Processor

 Memory

 I/O

o PWM, GPIO, DAC, ADC

o Interfacing I/O: polling vs. interrupt

11/28/2013 kai.huang@tum 50

Outline

 I/O Devices are mapped in the
address space of Computation
Components (CC), i.e., CCs
communicate with I/O devices
simply by reading/writing from/to
memory cells.

 Two general methods for access
o Polling - includes, a kind of busy-wait

loop
o Interrupts - using interrupt line of CC

to provide service to devices

11/28/2013 kai.huang@tum 51

Interfacing I/O Devices to Processor

11/28/2013 kai.huang@tum 52

 Continuous polling
While (!device ready) {

 Check device

}

 Periodic polling

 Issues:
o MASTER is tied up in

communication with device until
I/O operation is done

o No other work can be accomplished
by MASTER

o Typically one MASTER in system,
but many I/O devices

o Only really useful if devices are fast
• No time consuming context switches

Polling: Busy-Wait Interface

Processor

Status Register

Ctrl. Register

Data Register

I/O device

master

slave

data/address

11/28/2013 kai.huang@tum 53

 Procedure
o When I/O device needs MASTER

attention, an interrupt signal is
sent

o MASTER is “forced” to suspend its
current task

• Interrupts can be ignored (masked)
when critical task is executed

o MASTER acknowledges interrupt
and jumps to interrupt service
routine

o When finished control is returned
to the interrupted task

 Key observations:
o MASTER is free to do something

else until attention is needed
o Improves utilization of MASTER,

leading to a much better
response

o I/Os can proceed asynchronously
o Time consuming context

switches

Interrupt

Processor

Status Register

Ctrl. Register

Data Register

I/O device

master
slave

data/address

Intr. ack

Intr. request

Polling vs. Interrupt

Polling

 Pros
o Short latencies (low number

of IOs)

o Many events do not block the
normal execution of the
program

 Cons
o Most polls are unnecessary

o High CPU usage

o Reaction time depends on
number of IOs

Interrupt

 Pros
o Processor resources are only

used when needed

 Cons
o Program execution is

interrupted in a non-
deterministic manner

11/28/2013 kai.huang@tum 54

