
Atacama: An Open FPGA-based Platform for Mixed-Criticality
Communication in Multi-Segmented Ethernet Networks

Gonzalo Carvajal, Miguel Figueroa

Dept. of Electrical Eng. and
Center for Optics and Photonics

Universidad de Concepcion
Concepcion, Chile

{gcarvaja, mifiguer}@udec.cl

Robert Trausmuth

Dept. of Embedded Systems
UAS Technikum Wien

Vienna, Austria
robert.trausmuth@fhwn.ac.at

Sebastian Fischmeister

Dept. of Electrical and Computer Eng.
University of Waterloo

Waterloo, Canada
sfischme@uwaterloo.ca

Abstract—Ethernet is widely recognized as an attractive
networking technology for modern distributed real-time sys-
tems. However, standard Ethernet components require specific
modifications and hardware support to provide strict latency
guarantees necessary for safety-critical applications. Although
this is a well-stated fact, the design of hardware components
for real-time communication remains mostly unexplored. This
becomes evident from the few solutions reporting prototypes
and experimental validation, which hinders the consolidation
of Ethernet in real-world distributed applications.

This paper presents Atacama, the first open-source frame-
work based on reconfigurable hardware for mixed-criticality
communication in multi-segmented Ethernet networks. Ata-
cama uses specialized modules for time-triggered communica-
tion of real-time data, which seamlessly integrate with a stan-
dard infrastructure using regular best-effort traffic. Atacama
enables low and highly predictable communication latency on
multi-segmented 1Gbps networks, easy optimization of devices
for specific application scenarios, and rapid prototyping of new
protocol characteristics. Researchers can use the open-source
design to verify our results and build upon the framework,
which aims to accelerate the development, validation, and
adoption of Ethernet-based solutions in real-time applications.

Keywords-Real-Time Ethernet; safety-critical systems; open-
source hardware design; multi-segmented networks;

I. INTRODUCTION

For more than a decade, researchers have targeted Ethernet

as the natural replacement of legacy fieldbuses [1] in

modern distributed applications. Low-cost, high-speed, and

easy integration with existing networking infrastructure,

are appealing characteristics of this technology. However,

standard Ethernet is unable to provide hard latency guarantees

required for distributed safety-critical applications found

in avionics, automobiles, industrial control, etc. [2]. Thus,

industry and academy started to explore mechanisms to

provide latency guarantees on top of Ethernet, commonly

referred as Real-Time Ethernet (RTE). The literature and

recent developments in the area reveal two key points [2]–

[5]: (1) Ethernet is by definition a best-effort protocol with a

competitive approach, and then even high-end Commercial-

Off-The-Shelf (COTS) devices are intrinsically unable to

provide strict latency guarantees, and (2) Ethernet devices

require specific modifications and hardware support to fit

distributed safety-critical applications.

Within the real-time systems community, the perceived

high-cost of deploying hardware components hinders the

experimental validation of proposed enhancements for RTE.

At the same time, due to the general misconception that

high-speed and high-throughput devices (network processors,

gigabit switching fabrics, etc.) make timming analysis unnec-

essary [6], hardware designers tend to overlook strict real-

time requirements. The few available commercial solutions

for RTE [7]–[9] are tailored for specific application domains,

offer limited integration with COTS devices, or are closed

to the research community. These characteristics make them

hard to extend and adapt to the always evolving requirements

of modern distributed applications.

This work introduces Atacama, the first framework that

uses reconfigurable hardware and a fully open design

to encourage and accelerate the development, validation,

extension, and adoption of RTE technology in safety-critical

applications. Atacama uses a time-triggered approach [2],

integrating an Application-Specific Instruction-set Processor

(ASIP) that coordinates the exchange of time-sensitive data on

each station executing real-time tasks. In addition, a custom

forwarding path provides low and predictable propagation

latency across multiple switches. The modules can be

seamlessly integrated and co-exist with COTS devices using

best-effort traffic, enabling mixed-criticality communication.

The main contributions of this paper are two-fold: (1) it

consolidates and expands early concepts [10], [11] into the

first fully-functional open-source RTE framework based on

reconfigurable hardware supporting dynamic segmentation of

real-time domains, with an experimentally validated latency

model for real-time frames; and (2) it discusses the design

choices and implementation details to enable easy validation,

optimization, and rapid prototyping of the framework for

specific applications. The rest of the document is organized as

follows: Section II details a novel architecture for the original

ASIP described in [10]. Section III introduces the custom

2013 21st Annual International IEEE Symposium on Field-Programmable Custom Computing Machines

978-0-7695-4969-9/13 $26.00 © 2013 IEEE

DOI 10.1109/FCCM.2013.54

121

switching for real-time frames, which includes mechanisms

for topology discovery and dynamic segmentation of large

real-time domains, which is an unexplored characteristic

among available RTE solutions. Section IV presents an

experimental characterization of the implemented prototypes,

including robustness and timing analysis for accurate mod-

eling of the communication latency in different topologies.

Finally, Section V summarizes and concludes the paper.

II. TRAFFIC COORDINATION IN REAL-TIME STATIONS

Atacama uses the Network Code framework [12] to

coordinate the communication between distributed tasks.

Network Code introduces three components:

• A domain-specific instruction set to describe dynamic

Time-Division Multiple Access (TDMA) arbitration

• A compiler with a verification engine that translates the

programs into conflict-free executable schedules

• The entity that executes the schedules at runtime

This section describes the architecture of the execution

entity, which uses an adapted subset of the Network Code

instruction-set to coordinate the exchange of time-sensitive

data using Ethernet infrastructure [10].

A. The Network Code ASIP

Fig. 1 shows the general architecture of the Network Code

ASIP (NC-ASIP), which provides a programmable commu-

nication layer to coordinate the exchange of real-time data

between tasks running on distributed stations. Tasks access

real-time data by periodically accessing specific locations

of the dual-port DATA-MEM block. The NC-ASIP provides

a dedicated path to move data between the DATA-MEM and

the Ethernet interface at specific points in time, enabling

predictable processing times and preventing competition

between frames containing real-time data (real-time frames).

The Ethernet interface includes an arbiter to separate real-time

from best-effort frames, enabling integration with traditional

communication layers operating with standard best-effort

traffic, which offer no delivery guarantees.

In the NC-ASIP, each word on the CFG-MEM block

defines a data buffer through an initial address and length

mapped to locations on the DATA-MEM. The PROG memory

contains a schedule describing anisochronous communication

rounds that move data between the DATA-MEM and the

medium. Safety-critical systems typically define all their

communication requirements and data structures in advance,

and the designer must fill and verify both PROG and CFG-
MEM blocks before runtime. All memory blocks have 32-bits

data buses. The instructions use a 32-bit representation, and

the data uses 32-bit words.

The NC-ASIP implements each instruction as a finite

state machine (instruction block). The controller fetches and

decodes the instructions from the PROG memory, triggering

execution of the corresponding block, which enable control

of data flow, timing, and execution flow.

Network Code ASIP

Physical Transceiver (PHY)

Real-Time Tasks

BE frame
BE

frame

32

32 32

8

slave

mast

8

8

8RT frame

32 32

autoreceiver

halt()

future()

receive() branch()

sync()

create()

send()

controller
receive-FIFO send-FIFO

RT-Rx-FIFO RT-Tx-FIFO

Rx-MAC
arbiter

Tx-MAC
arbiter

guards\stat

DATA-MEM
CFG-MEM

PROG

MAC

Figure 1: Architecture of the Network Code ASIP

B. Data Flow Control

Data flow instructions move data between the DATA-MEM
and the physical medium. The following paragraphs describe

the transmission and reception paths as shown in Fig. 2.

1) Transmission path: Fig. 2a shows the path that gener-

ates real-time frames. When reading the instruction create(A),
the controller triggers the create block, which reads address

A of the CFG-MEM, maps the read location to the DATA-MEM,

and moves the corresponding data to the send-FIFO. When

reading the instruction send(channel, TTL), the controller

triggers the send block, which takes the data stored in the

send-FIFO, encapsulates it into an Ethernet frame, and stores

it in the RT-Tx FIFO. Fig. 3 shows the format of a real-time

frame, which have a special value in EthType field (NC-DATA
for data frames), and the payload includes information such

as the TTL (maximum number of switches in the path), the

data length vl (in 32-bit words), the logical channel (used

to separate different data flows in the receivers), the ID of

the origin buffer, and a sequential counter. The send block

adds a pad in case the data is not large enough to comply

with the minimum frame size of 64 bytes. The MAC starts

transmitting the frame as soon as the RT-Tx FIFO asserts its

non-empty flag, adding the Frame Check Sequence (FCS)

at the end. The send block can also generate minimum

sized frames tagged as NC-SYNC type, which are used for

synchronization purposes.

The transmission path operates in two clock domains: NCclk

driving the logic for instructions, and Txclk driving the MAC

and PHY logic. Because of the wider data buses, NCclk can

run at a fraction of the frequency of the Ethernet logic and

still achieve line speed on the physical links.

2) Reception path: Fig. 2b shows the path to retrieve data

from the medium. The input logic uses a shift register to

delay the incoming frame until checking its EthType field

to separate real-time from best-effort frames. The RT-Rx

122

CFG-
MEM

DATA-
MEM send

FIFO
RT-Tx
FIFO

app data app data frameapp data

wren rden wren

frame

empty
rden

tx_data

tx_dv

from controller

32 32 32 8 8

TXclk domainNCclk domain

create

start
create

send

start
send

MAC To
PHY

(a) Transmission Path
RXclk domain NCclk domain

dvld
frame

goodframe
dvld

frame

NC_type

goodframe

wren

frame

rden
app data

NC_data
(wren)

NC_sync
to controller

8 8

32
32

32rx_dv

rx_data

DATA-
MEM

CFG-
MEM

rden

start

from controller

32
app data

32

from
PHY

MAC Shift
reg

Check
Type

autorecRT-Rx
FIFO

BE-Rx
FIFO

recv
FIFO

receive

receive

(b) Reception Path

Figure 2: Block Diagram for Transmission and Reception Path in the NC-ASIP

FIFO retains real-time frames until the goodframe signal

from the MAC triggers the autoreceive block, which parses

the frame fields to execute predefined actions. For frames

tagged as NC-DATA, the block extracts the application data

and stores it in the corresponding receive-FIFO (there is

one FIFO per channel). When reading a receive(channel, A)
instruction, the controller triggers the receive block, which

reads the specified channel and stores the data on the location

of DATA-MEM specified for variable A. If the schedule does

not execute a receive() instruction, the data stays in the FIFO

until a new frame arrives. For frames tagged as NC-SYNC,

the autoreceive block advertises the event to the controller

without further processing.

C. Timing Control

Timing control instructions enable the definition of periodi-

cal communication rounds to coordinate the exchange of real-

time data using TDMA arbitration. Network Code defines a

Reference Broadcast Synchronization (RBS) [13] approach to

maintain a common sense of time across distributed stations.

The network contains a single master station that generates a

synchronization frame to signal the start of communication

rounds. All other stations are slaves that start executing their

local actions for the round (transmitting or retrieving data at

specific times) only after receiving a synchronization frame.

For conflict-free operation, the schedules must consider a

worst-case value for the time span since the transmitter emits

a frame until all the receivers processes it.

The instruction sync(mode, dl) implements the RBS scheme

using two operation modes: (1) in master mode, the controller

triggers the send block to emit a synchronization frame (NC-
SYNC type without application data), and (2) in slave mode,

the controller will stall the execution of the next instructions

until either the arrival of a synchronization frame, or the

expiration of a countdown timer with initial value dl.
The instruction future(L, dl) starts a countdown timer with

PayloadDest Src Type FCS

vl Chan VarID Count Application Data

8B 6B 6B 2B 42-1500 B 4B

1B2B 1B 2B [vl*4] B (+optional pad)
TTL
1B

Pream

Figure 3: Real-time Frame Format

initial value dl. The halt() instruction stalls the program

waiting for the expiration of this timer, and then resumes

execution at label L. These instructions enable the assignment

of time slots to coordinate the communication tasks.

D. Execution Flow Control

The branch(guard, L) instruction enables the implemen-

tation of dynamic schedules that make on-the-fly decisions

based on guards. Guards check for particular conditions

based on values of buffers, execution history, flags, etc. If

the evaluated guard returns TRUE, the schedule will continue

execution at the specified label L; otherwise, the schedule

will continue with the next instruction. For example, a station

can stop transmitting data when a certain variable lies below

a predefined threshold.

E. Hardware implementation

We accelerate the execution time of schedules by mapping

each instruction to independent hardware resources and

enabling concurrent execution. Table I summarizes the

dependencies between instructions in the NC-ASIP. For two

sequential instructions x()-y(), x() specifies the column, y()
the row, and the characters have the following meaning:

• c : instructions can run concurrently

• b : instructions share a resource, and then the second

one waits until the first one releases the shared resource

(see Fig. 1)

• w : control dependency. These are related to branch,

halt, and sync(slave) instructions, since they must wait

123

Table I: Summary of instruction dependencies

cr
ea

te

se
n

d

re
ce

iv
e

sy
n

c(
m

)

sy
n

c(
s)

h
al

t

fu
tu

re

b
ra

n
ch

create w c b c w w c w
send c w c w w w c w

receive b c w c w w c w
sync(m) c w c w w w c w
sync(s) c c c c w w c w

halt c c c c w w c w
future c c c c w w w w
branch b c b c w w c w

Sensor

1 L0 : f u t u r e (1 0 ,L0)
c r e a t e (A)

3 send (ch0)
h a l t ()

Logger

L1 : f u t u r e (L1 , 10)
2 r e c e i v e (A , ch0)

h a l t ()

Figure 4: Example schedules

for specific conditions to decide when and/or where to

continue the program execution.

The controller checks the running state (idle/busy) of

each block to calculate the locking conditions during the

decoding phase of the instructions. After triggering a block,

the controller fetches and decodes the next instruction. If

Table I permits concurrent execution, the controller will

trigger the second block. Otherwise, it will stop fetching new

instructions until the lock is resolved.

The modular design also allow the designer to take

advantage of static reconfiguration to optimize the use of

resources and increase the reliability of the network. The

designer can optimize the architecture according to the

particular schedule on each station. For instance, Fig. 4 shows

an example schedule for periodical exchange of data between

a sensor and a data logger. For simplicity, we assume that the

devices are synchronized. Since the traffic is unidirectional,

we can simply remove the reception path from the sensor and

the transmission path from the data logger. This optimizes

the use of resources and power consumption in the network

interfaces, which is beneficial for embedded systems. This

also helps on keeping the integrity of the real-time network,

since it prevents the interference of unplanned frames from

faulty units or design glitches in receiver-only units.

III. DEDICATED REAL-TIME FORWARDING PATH

This section introduces a custom forwarding path for real-

time frames in the switches. Fig. 5 shows a general diagram

of an enhanced switch. The modules in gray implement a

cut-through broadcast path for real-time frames generated

from NC-ASIPs, which resembles the classical bus topology

used in most legacy fieldbuses [1]. This path naturally

spans across multiple switches, and provides functionalities

such as discovery of real-time capable devices in the path

COTS Switching Fabric

MAC

PHY

BE-Rx
FIFO

Classif.

Real-Time Path

Programmable
connections

RT-Rx
FIFO

MAC

PHY

BE-Tx
FIFO

Tx-arbit.

RT-Tx
FIFO

MAC

PHY

BE-Tx
FIFO

Tx-arbit.

RT-Tx
FIFO

send

Figure 5: Enhanced Ethernet Switch

(NC-ASIPs and switches), and logical segmentation of real-

time domains in large networks. Unlike other switching

architectures tailored for time-triggered communication [11],

[14], the proposed path omits previous configuration steps.

A. Classifying and Forwarding Real-time frames

Fig. 6 shows a block diagram of the dedicated path for

real-time frames. A classifier on each input port checks the

EthType and TTL of arriving frames. The classifier stores

real-time frames (tagged as NC-DATA or NC-SYNC) with

TTL≥ 1 in the dedicated RT-Rx-FIFO, and automatically

discards frames with a TTL= 0. As soon as the RT-Rx-
FIFO asserts its non-empty flag, the send block will forward

the frame to the dedicated RT-Tx buffer in all the other

ports (cut-through forwarding) decrementing the TTL by

one. Considering the broadcast nature and that the schedules

running in the NC-ASIPs prevent competition between real-

time frames, the dedicated path omits any address processing

and queuing mechanisms to handle contention. This is an

essential characteristic to reduce the latency and jitter.

Best-effort frames follow the traditional path through

the COTS switching fabric. Real-time frames receive strict

priority access to the output ports. Whenever the RT-Tx-
FIFO has data to transmit, the Tx-arbiter automatically blocks

access to the output port from the COTS fabric. To account for

potentially interrupted best-effort transmissions, the arbiter

waits the time required to transmit a minimum sized frame

and the Inter-Frame Gap (IFG), and then starts reading the

data from the RT-Tx-FIFO. Once emptying the real-time FIFO,

the arbiter waits again for the IFG before giving access to

the output port back to the best-effort FIFO. As a result,

stations using COTS components communicate transparently,

but their available bandwidth will be reduced according to

the amount of real-time traffic flowing through the network.

We assume that higher layers deal with corrupted best-effort

frames due to interrupted transmissions.

B. Cyclic Topology Discovery

Stations using COTS Network Interface Card (NIC)s are

unable to interpret the format of real-time frames generated

124

dvld

frame
dvld

frame

NC_type
& TTL>0

start

wren

frame

rden wren

8

8

rx_dv

rx_data

empty
frame

dvld

tx_data

tx_dv

frame

frame

empty

BE_data

8
8 8 8

88

from
input
PHY

RXclk domain TXclk domainSWclk domain

MAC RT-Rx
FIFO

MAC

Check
Type &

TTL
BE-Rx
FIFO

send

COTS
fabric

RT-Tx
FIFO

BE-Rx
FIFO

Tx
arbiter MAC

 to
output
 PHYs

Figure 6: Real-time Path Inside the Switch

from NC-ASIPs, and thus it is necessary to prevent the

propagation of real-time frames to these stations.

Fig. 7 illustrates a mechanism for discovering real-time

capable devices during the propagation of synchronization

frames at the start of communication rounds. Switches always

broadcast synchronization frames to all the output ports. Real-

time capable devices (either NC-ASIPs or switches) automat-

ically respond to synchronization frames using acknowledge

frames tagged as NC-ACK type (Fig. 7a). The switch will

assert the programmable connection between the real-time

path and the ports that received either a synchronization or

an acknowledge frame from external sources. Input ports use

dedicated logic to locally process acknowledge frames on-

the-fly while the synchronization frame propagates, without

storing or propagating them. After the synchronization slot,

the switch will forward real-time data frames only to the ports

attached to real-time capable devices (Fig. 7b). Consequently

stations using COTS NICs will only suffer from blocking and

interruptions during the synchronization slots, and remain

unaffected during the exchange of real-time data.

The switch updates the connections on each synchroniza-

tion slot. Providing an adequate upper bound for the latency

along the entire network, the designer can plan the schedules

without knowing the specific topology, and location of real-

time stations can change at runtime.

C. Real-time Ethernet Segments

A real-time segment contains stations that synchronize to a

single master to exchange real-time data. A data subsegment

is a subset of devices within a real-time segment exchanging

data between them, without propagating frames to devices

outside the subsegment. Fig. 8 shows two examples of

segmentation of real-time stations in a large network.

Fig. 8a splits the network into two independent real-time

segments, each one broadcasting data within its own domain.

The designer can specify real-time domains by simply tapping

a link with a filter/gateway to block real-time frames and

prevent their propagation from one segment to another. It

is also possible to accomplish the same behavior using a

COTS managed switch for blocking specific frames. This

configuration enable easy segmentation of real-time stations,

without affecting the propagation of best-effort frames.

RT

BE RT

BERT sync

ack
master

RT switch

RT

station

(a) Propagation of Sync and Ackn Frames

RT

BE RT

BERT

RT

(b) Real-time Path After Sync Slot

Figure 7: Discovery of Real-time Capable Devices

Fig. 8b shows a logical division of a real-time segment

into multiple data subsegments. In this case, all switches are

real-time capable, and the logical separation is based on the

TTL value of real-time frames. Frames from stations S1 and

S2 are only useful within their corresponding subsegments.

We can implement logical isolation of data frames between

subsegments by using a TTL=2 and TTL=3 for frames

generated from S1 and S2, respectively. Synchronization

frames from the master must have a TTL≥ 4 to reach all the

stations in the segment. This approach enables concurrent

transmission of data in different subsegments during the

same time slot, increasing the effective network utilization.

However, it requires careful planning of the schedules

considering the specific topology of real-time stations.

IV. EXPERIMENTAL RESULTS

This section summarizes the experimental characterization

of prototypes implemented on the NetFPGA platform [15].

The prototypes include an evaluation platform that holds up

to four independent instances of the NC-ASIP, and a four-

port enhanced switch that integrates the dedicated real-time

path to the COTS switch design available for the NetFPGA.

Both devices can operate at line rate over 1Gbps links.

125

BE

RT

RT

RT

BE RTRT

RT

RT

BEBE

RT

RT segment 1

RT segment 2Master

Master

COTS
switch

Filter

(a) Independent Real-time Segments

BE

RT

RT

RT

BE RTRT

RT

RT

BEBE

RT

Data subsegment 1 Data subsegment 2

Master

RT segment

S1 S2

(b) Synchronized Data Dubsegments

Figure 8: Logical Real-time Segments Inside a Larger Ethernet Network

Table II: Device Utilization Summary on Virtex2 Chip

Device FFs 4-in LUTS BRAMs
NC-ASIP (full) 4.3% 7.8% 7.8%
NC-ASIP (no-tx) 3.4% 6.4% 7.3%
NC-ASIP (no-rx) 2.9% 6.0% 6.0%

Reference COTS Switch 25% 40.5% 48.3%
Custom switch 26% 40.7% 59.3%

A. Device Utilization

Table II summarizes the device utilization for each

prototype. The percentages relate to a total of 47 232
registers, 47 232 four-input LUTs, and 232 16Kb Block

RAMs available in the Virtex2 chip included in the NetFPGA.

The table shows the utilization of a full instance of the NC-

ASIP as described in Section II-A, and alternative implemen-

tations that remove the instruction blocks for transmission and

reception. As stated in Section II-E, reconfigurable hardware

allows the designer to fit the architecture according to the

particular schedules. For instance, removing the reception

instructions for a simple sensor that only needs to transmit

data saves around 20% of logical resources in relation to

the full implementation. We aim to develope an integrated

compilation tool to generate the schedules and the matching

architecture for each station from high-level specifications.

The custom switch retains all the functionality of the COTS

switch, with the additional modules for the real-time path in

all the ports. Since the MAC interface is already available

in the COTS device, the logic for the dedicated path has

a negligible impact in the total utilization. The higher cost

relates to the memory required for the additional FIFOs. This

shows that the we can integrate the real-time path as a default

characteristic to COTS switches at a very low cost, and only

real-time stations must assume the cost of specialized NICs.

B. Execution Time of Schedules

Fig. 9 shows the measured execution time for the create,

send, receive, and branch instructions as a function of vl. The

graph reports the number of clock cycles since the controller

0 10 20 30 40 50
0

20

40

60

80

100

32−bit words

N
C

cl
k c

yc
le

s

create
send
branch
receive

Figure 9: Execution Time for NC Instructions

triggers the corresponding instruction block until it returns

to the idle state. For the branch instruction, the experiment

considers the longest execution time corresponding to the

comparison of two variables of length vl. As we see, the

execution time grows linearly as a function of the variable

length. Because the minimum size of the frames is 64 B, send
has a constant execution time for variables shorter than 11

words. The measured time for each case remained constant

through 50 samples, indicating that the time for moving

data between the MAC and the data buffers is predictable,

removing the variability of processing time in the end-

stations. This is a relevant characteristic for efficient TDMA

arbitration. Equivalent implementations using software stacks

lead to pessimistic worst-case scenarios that limit the efficient

utilization of Ethernet infrastructure [12], [16].

C. End-to-end Latency

We define the end-to-end latency (EEL) for a real-time

frame as the time required to move a byte from a data buffer

in the origin to the receive-FIFO in the destination. The EEL

between two stations with NS switches in the path is:

EEL = TxASIP + RxASIP +NSSw + (NS + 1)L (1)

where

126

Table III: Maximum Observed Latency

Max. latency [125MHz clock pulses]
TxASIP 60

Sw 148
RxASIP 94, for vl ≤11

94 + 4(vl-11), for vl >11
L 48

• TxASIP: defined for a create-send sequence, without

further instructions in the middle. Time span since

triggering the create block until the first byte of

application data leaves the MAC.

• Sw: switch forwarding time since the first byte of

application data arrives to the MAC in the input port

until it leaves the MAC in the output port.

• RxASIP: time span since the first byte of application data

arrives to the MAC in the destination until it reaches

the receive-FIFO for the corresponding channel.

• L: effects of physical links. Time span since the first

byte of data leaves the MAC in the origin port until it

reaches the MAC in the other end.

We characterized these parameters on the implemented

prototypes. The Rxclk and Txclk driving the Ethernet interfaces

run at 125MHz for 1Gbps links. The SWclk for the forwarding

path in the switch also runs at 125MHz, and the NCclk in

the NC-ASIP runs at 62.5MHz (see Figs. 2 and 5). Table III

shows the maximum value for each term in (1) as a function

of vl, measured on each device using the Chipscope tool with

a sampling clock of 125MHz. The reported value corresponds

to the highest value (worst-case) observed in a set of 100

samples for each case. For all cases, the difference between

the highest and lowest value in the sample was never higher

than two clock cycles, which we attribute to the drift between

the clock domains inside the devices and the sampling clock.

Both NC-ASIPs and switches start transmission as soon as

they detect available data in the FIFOs, and then the latency

is independent of vl. The total latency in the switch includes

a delay of 32 cycles related to the input classifier, and 76

cycles before the RT-Tx-FIFO gets access to the MAC in the

output port. As discussed in Section III-A, this waiting time

accounts for the IFG (12 cycles) and the transmission time

of a minimum sized frame (64 cycles). The rest accounts

for internal processing. In the case of the links, the latency

must be characterized for each specific configuration. For

this experiment, we considered two Broadcom BCM5464SR

PHYs linked with 7.62m CAT6 cables.

Replacing the observed values in (1), we model the worst-

case EEL as:

EEL(NS) = 1.624 + 1.576NS [μs] (2)

for vl ≤ 11, and

Table IV: Worst-case End-to-end Latency [μs]

vl [words] model [μs] observed [μs] error
5 6.352 6.32 0.51 %
20 6.64 6.608 0.48 %
35 7.12 7.088 0.45 %
70 8.24 8.224 0.20 %

EEL(NS , vl) = 1.272 + 1.576NS + 0.032vl[μs] (3)

for vl > 11.

To verify the model, we directly measured the EEL

between two instances of the NC-ASIP implemented on

a single NetFPGA using a reference global clock, which

exchange real-time frames across three enhanced switches.

We additionally connected three ports of a traffic generator

broadcasting best-effort frames at 800Mbps each. Table IV

compares the highest observed latency from a set of 100

samples for each case, to the worst-case value obtained

from (2) and (3). As we see, even under the highly saturated

scenario for best-effort traffic, the models provide a tight and

effective upper-bound for the latency of real-time frames.

D. Robustness Against Co-existing Best-effort Traffic

In this experiment we used an IXIA traffic generator to

collect long-term statistics over controlled streams. One port

emits two periodical reference streams of timestamped frames.

One stream generates frames of configurable length tagged

as NC-SYNC, with a period of 100μs. The other stream

is similar, but generates regular best-effort frames. These

streams propagate through three switches to a second port in

the generator which collects the instantaneous propagation

latency for each type. Two additional ports broadcast raw

best-effort frames of 1,000B at a rate of 470Mbps each. This

configuration generates an aggregated bandwidth close to

over-utilization, and allows us to stress the effects of jitter

in the latency of the different classes.

Fig. 10 shows the observed latency versus the transmission

rate on the reference streams. Latency measurements are only

valid when there are no dropped frames. The markers show

the average latency over a sample set of 107 frames for

each type. The ends of the bars represent the minimum

and maximum value on each set. On the one hand, we

see that the latency and jitter of the reference best-effort

stream increases with the transmission rate. When the rate

of timestamped streams raises over 50Mbps, the total traffic

exceeds the capacity of the links, and the reference best-effort

stream starts reporting dropped frames. On the other hand,

the real-time path provides a bounded latency and no losses

for real-time frames, independent of the rate of best-effort

traffic. The cut-through forwarding in the real-time path also

reduces the propagation latency in relation to the traditional

store-and-forward used in most COTS switches.

127

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

Tx rate on reference streams [Mbps]

La
te

nc
y

[μ
s]

BE frames
RT frames

Figure 10: Robustness of Real-time Latency

E. Application Example: Real-time Video Streaming

To visualize the effect of the timing properties, we prepared

a setup for real-time video streaming. In the setup, a source

station emits frames with video lines every 31.68μs (the

required period to display a 640x480 video at 60fps). The

frames propagate through three switches to a sink station.

The task in the sink reads the DATA-MEM at the same period

to display the received pixels. The DATA-MEM only holds

one video line (no video buffering), and then any variation

in the EEL will degrade the quality of the displayed video.

The experiment shows two properties of the framework: (1)

the NC-ASIPs can cope with the strict periodicity requirement

for the fluid displaying of the video in the sink station, and

(2) the timing properties of real-time frames are resilient to

injected best-effort traffic. A detailed description of the setup

and results are available on-line [17].

V. CONCLUSIONS

This work introduces our open-source RTE framework

called Atacama for multi-segmented networks with mixed-

criticality traffic. The framework introduces an ASIP to

coordinate the exchange of time-sensitive data between real-

time stations. In addition, a custom switching path provides

low and predictable forwarding latency of real-time frames,

automatic discovery of real-time stations, and dynamic

segmentation of real-time domains in large networks. The

modules feature a dual-pathway to provide separate resources

for real-time and best-effort traffic, enabling mixed criticality

communication. Using experimental data from implemented

prototypes, we derived a model for the communication latency

of real-time frames. The model provides an accurate upper-

bound for the end-to-end latency between distributed real-

time tasks, only limited by physical characteristics such as the

drift between clock domains and uncertainty in the physical

links. The experiments also showed that latency guarantees

are robust to the injection of best-effort traffic. Atacama is

the first fully-functional RTE framework available as an open-

source project (available under request), enabling researcher

to validate the resources, build upon, and test the devices on

their own applications.

On-going and future work includes porting the designs

to fit different FPGA chips, development of design tools

to generate the schedules and matching architectures for

the distributed ASIPs from high-level specifications, and

expanding the framework to 10Gbps Ethernet devices.

ACKNOWLEDGMENTS

This research was supported in part by grants MECESUP

#FSM0601 and Fondecyt #1121010 from the Chilean gov-

ernment, and projects NSERC DG 357121-2008, ORF-RE03-

045, ORF-RE04-036, ORF-RE04-039, APCPJ 386797-09,

CFI 20314 and CMC, and the industrial partners associated.

REFERENCES

[1] J.-P. Thomesse, “Fieldbus Technology in Industrial Automa-
tion,” Proc. IEEE, vol. 93, no. 6, pp. 1073 –1101, Jun 2005.

[2] H. Kopetz, “The Rationale for Time-Triggered Ethernet,” in
Real-Time Systems Symposium, Dec. 2008, pp. 3 –11.

[3] M. Felser, “Real-Time Ethernet - Industry Prospective,” Proc.
IEEE, vol. 93, no. 6, pp. 1118–1129, Jun. 2005.

[4] J.-D. Decotignie, “The Many Faces of Industrial Ethernet,”
IEEE Ind. Electron. Mag., vol. 3, no. 1, pp. 8 –19, Mar. 2009.

[5] J. Jasperneite, J. Imtiaz, M. Schumacher, and K. Weber, “A
Proposal for a Generic Real-Time Ethernet System,” IEEE
Trans. Ind. Informat., vol. 5, no. 2, pp. 75 –85, May. 2009.

[6] J. A. Stankovic, “Misconceptions About Real-Time Com-
puting: A Serious Problem for Next-Generation Systems,”
Computer, vol. 21, no. 10, pp. 10–19, 1988.

[7] “Profinet,” http://www.profibus.com.

[8] “Ethercat Technology Group,” http://www.ethercat.org/.

[9] “Time-Triggered Ethernet,” http://www.tttech.com.

[10] S. Fischmeister, R. Trausmuth, and I. Lee, “Hardware Acceler-
ation for Conditional State-Based Communication Scheduling
on Real-Time Ethernet,” IEEE Trans. Ind. Informat., vol. 5,
no. 3, pp. 325–337, Aug 2009.

[11] G. Carvajal and S. Fischmeister, “A TDMA Ethernet Switch
for Dynamic Real-Time Communication,” in Proc. of the 18th
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), May 2010, pp. 119–126.

[12] S. Fischmeister, O. Sokolsky, and I. Lee, “A Verifiable
Language for Programming Communication Schedules,” IEEE
Trans. Comput., vol. 56, no. 11, pp. 1505–1519, Nov 2007.

[13] J. Elson, L. Girod, and D. Estrin, “Fine-grained Network Time
Synchronization Using Reference Broadcasts,” SIGOPS Oper.
Syst. Rev., vol. 36, no. SI, pp. 147–163, Dec. 2002.

[14] K. Steinhammer, P. Grillinger, A. Ademaj, and H. Kopetz, “A
Time-Triggered Ethernet (TTE) Switch,” in Design, Automa-
tion and Test in Europe (DATE), Mar. 2006, pp. 794–799.

[15] “NetFPGA project webpage,” http://www.netfpga.org.

[16] P. Grillinger, A. Ademaj et al., “Software Implementation of
Time-Triggered Ethernet Controller,” in Workshop on Factory
Communication Systems, Jun 2006, pp. 145–150.

[17] “Embedded Software Group at University of Waterloo,”
http://esg.uwaterloo.ca.

128

