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Abstract— Power dissipation has constrained the perfor-
mance boosting of modern computer systems in the past decade.
Dynamic power management (DPM) has been implemented in
many systems to change the system (or device) state dynamically
to reduce the power consumption. This paper explores how to
efficiently and effectively reduce the energy consumption to
handle event streams with hard real-time or quality of service
(QoS) guarantees. We adopt Real-Time Calculus to describe the
event arrival by arrival curves in the interval domain. To reduce
the implementation overhead, we propose a periodic scheme to
determine when to turn on/off the system (or device). This paper
first presents two approaches to derive periodic scheme to cope
with systems with only one event stream, in which one approach
derives an optimal solution for periodic power management
with higher complexity and the other derives approximated
solutions with lower complexity. Then, extensions are proposed
to deal with multiple event streams. Simulation results reveal
the effectiveness of our approaches.

Keywords: Power Management, Energy Minimization,
Real-Time Event Streams, Real-Time Calculus, QoS.

I. I NTRODUCTION

Power dissipation has been an important design issue
in a wide range of computer systems in the past decade.
Power management with energy efficiency considerations is
not only useful for mobile devices for the improvement on
operating duration but also helpful for server systems for
the reduction of power bills. Dynamic power consumption
due to switching activities and static power consumption
due to the leakage current are two major sources of power
consumption of a CMOS circuit [12]. For micrometer-scale
semiconductor technology, the dynamic power dominates the
power consumption of a processor. However, for technology
in the deep sub-micron (DSM) domain, the leakage power
consumption is comparable to or even more than the dynamic
power dissipation.

The dynamic voltage scaling (DVS) technique was intro-
duced to reduce the dynamic energy consumption by trading
the performance for energy savings. For DVS processors,
a higher supply voltage, generally, leads to not only a
higher execution speed/frequency but also higher power
consumption. As a result, DVS scheduling algorithms, e.g.,
[2], [26], [27], tend to execute events as slowly as possible,
without any violation of timing constraints. On the other
hand, dynamic power management (DPM) can be applied
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to control the change of system mode to consume less
leakage power, e.g., to a sleep mode. For DVS systems
with non-negligible leakage power consumption, to minimize
the energy consumption for execution, there is acritical
speed, in which executing at any speed lower than the critical
speed consumes more energy than at the critical speed [5],
[12]. However, returning from the sleep mode has timing
and energy overheads, due to the wakeup/shutdown of the
processor and data fetch in the register/cache. For example,
the Transmeta processor in 70nm technology has 483µJ
energy overhead and less than 2 msec timing overhead [12].

For non-DVS systems with the sleep mode, Baptiste [3]
proposes an algorithm based on dynamic programming to
control when to turn on/off the system for aperiodic real-
time events with the same execution time. For multiple low-
power modes, Augustine et al. [1] determine the mode that
the processor should enter for aperiodic real-time events and
propose a competitive algorithm for on-line use. Swami-
nathan et al. [18], [19] explore dynamic power management
of real-time events in controlling shutting down and waking
up system devices for energy efficiency. To aggregate the idle
time for energy reduction, Shrivastava et al. [17] propose a
framework for code transformations.

Leakage-aware scheduling has also been recently explored
on DVS platforms, such as [4], [5], [10]–[13]. In particular,
researches in [5], [12], [13] propose energy-efficient schedul-
ing on a processor by procrastination scheduling to control
when to turn off the processor. Jejurikar and Gupta [11] then
further consider real-time events that might complete earlier
than their worst-case estimation. Fixed-priority scheduling is
also considered by Jejurikar and Gupta [10] and Chen and
Kuo [4]. For uniprocessor scheduling of aperiodic real-time
events, Irani et al. [9] propose a 3-approximation algorithm
for the minimization of energy consumption. Niu and Quan
[16] apply similar procrastination strategies for periodic real-
time events with leakage considerations. The basic idea
behind the above results is to execute at some speed (mostly
at the critical speed) and control the procrastination of the
real-time events as long as possible so that the idle interval
is long enough to reduce the energy consumption.

Most of the above approaches require either precise infor-
mation of event arrivals, such as systems with periodic real-
time events [4], [5], [10]–[13] or aperiodic real-time events
with known arrival time [1], [3], [9]. However, in practical,
the precise information of event arrival time might not be
known in advance since the arrival time depends on many



factors. When the precise information of event arrivals is
unknown, to our best knowledge, the only known approach
is to apply the on-line algorithms proposed by Irani et al.
[9] and Augustine et al. [1] to control when to turn on the
system. However, since the on-line algorithms in [1], [9]
greedily stay in the sleep mode as long as possible without
referring to incoming events in the near future, the resulting
schedule might make an event miss its deadline.

To model such irregular events, Real-Time Calculus, ex-
tended from Network Calculus [7], was proposed by Thiele
et al. [20] to characterize events with arrival curves by eval-
uating how often system functions will be called, how much
data is provided as input to the system, and how much data is
generated by the system back to its environment. Specifically,
the arrival curve of an event stream describes the upper and
lower bounds of the number of events arriving to the system
for a specified interval. Therefore, schedulability analysis
can be done based on the arrival curves of event streams.
For scheduling event streams based on Real-Time Calculus
in DVS systems under buffer constraints, Maxiaguine et al.
[14] develop adaptive algorithms to control the execution
speed dynamically at periodic intervals of predefined length
without exploiting the possibility for finding the optimal
interval length with respect to the power consumption.

This paper explores how to apply DPM to reduce the en-
ergy consumption while satisfying the real-time or qualityof
service (QoS) constraints. We consider systems (or devices)
with active, standby, and sleep modes with different power
consumptions. Similar to the approaches in [4], [10]–[12],for
systems with DVS capability, we assume that the execution
of events is at the critical speed and explore the energy reduc-
tion by applying DPM for reducing the energy consumption
for idling. Distinct from the on-line adaptive algorithms in
[14], to reduce the run-time overhead for determining when
to perform mode changes, we propose off-line algorithms to
derived optimal or approximated solutions to periodic power
management for controlling when to change the system mode
periodically. The light run-time overhead of the periodic
power management schemes is very suitable for devices that
only have limited power on computation. For scheduling one
event stream under the real-time or QoS constraints, we de-
velop an approach to derive optimal solutions and another to
derive approximated solutions with lower complexity. Then,
by applying the Modular Performance Analysis [24], we
extend the developed approaches to cope with multiple event
streams. To demonstrate the performance of the proposed
approaches, several case studies are explored, in which the
results reveal the effectiveness of our approaches.

The rest of this paper is organized as follows: Section II
provides system models. Section III presents our approaches
for one event stream, while Section IV copes with multiple
event streams. Simulations results are presented in Section V.
Section VI concludes this paper.

II. SYSTEM MODELS AND PROBLEM DEFINITION

a) Hardware Model: We consider a system (or a de-
vice) that has three power consumption modes, including
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Fig. 1. Example for state transit, where the tuple one each transit is the
timing overhead and energy overhead.

active, standby,and sleepmodes. The power consumption
in the sleep mode isPσ. To serve an event, the system must
be in the active mode with power consumptionPa, in which
Pa > Pσ. Once there is no event to serve, the system can
enter the sleep mode. However, switching from the sleep
mode to the active mode takes time, denoted bytsw,on, and
requires additional energy overhead, denoted byEsw,on. To
prevent the system from frequent mode switches, the system
can also stay in the standby mode. The power consumption
Ps in the standby mode, by definition, is less thanPa and
is more thanPσ. In this paper, we assume that switching
between the standby mode and the active mode has negligible
overhead, compared to the other switches, which is the same
as the assumption in [25], [28]. Moreover, switching from
the active (also standby) mode to the sleep mode takes time,
denoted bytsw,sleep, and requires additional energy overhead,
denoted byEsw,sleep. Fig. 1 illustrates the state diagram of
these three modes. For simplicity, once the system issues a
mode switch from one mode to another mode, we assume
that the power consumption of the system before the system
enters the new mode isPσ.

b) Event Model: This paper focuses on events that
arrive at the system inputs irregularly. To model such events,
we adopt the arrival curves based on Real-Time Calculus
[20]. Specifically, a trace of an event stream can conveniently
be described by means of a cumulative functionR(t), defined
as the number of events seen on the event stream in the time
interval [0, t). While any R always describes one concrete
trace of an event stream, a tuplēα(∆) = [ᾱu(∆), ᾱl (∆)] of
upper and lower arrival curves provides an abstract event
stream model, providing bounds on admissible traces of an
event stream. The upper arrival curvēαu(∆) provides an
upper bound on the number of events that are seen in any
time interval of length∆, while the lower arrival curvēαl (∆)
analogously provides a lower bound. Please refer to [20] for
detailed discussion.

The concept of arrival curves unifies many other common
timing models of event streams. For example, a periodic
event stream can be modeled by a set of step functions where
ᾱu(∆) =

⌊

∆
p

⌋

+ 1 and ᾱl (∆) =
⌊

∆
p

⌋

. For a sporadic event
stream with minimal inter arrival distancep and maximal
inter arrival distancep′, the upper and lower arrival curve
is ᾱu(∆) =

⌊

∆
p

⌋

+ 1, ᾱl (∆) =
⌊

∆
p′

⌋

, respectively. Moreover,
for an event stream with periodp, jitter j, and minimal
inter arrival distanced, the upper arrival curve is̄αu(∆) =
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ᾱl (∆)

(c)

∆

Fig. 2. Examples for arrival curves, where (a) periodic events with period
p, (b) events with minimal inter-arrival distancep and maximal inter-arrival
distancep′ = 1.5p, and (c) events with periodp, jitter j = p, and minimal
inter-arrival distanced = 0.8p.

min{
⌈

∆+ j
p

⌉

,
⌈∆

d

⌉

}. Fig. 2 illustrates arrival curves for the
above cases. For details, please refer to [20].

Analogously to the cumulative functionR(t), the concrete
availability of the system can be described by a cumulative
function C(t), that is defined as the number of available
resources, e.g., processor cycles or bus capacity, in the time
interval [0, t). Analogous to arrival curves that provide an
abstract event stream model, a tupleβ(∆) = [βu(∆),βl (∆)]
of upper and lower service curves then provides an abstract
resource model. The upper and lower service curve provides
an upper and lower bound on the available resources in any
time interval of length∆.

For an event streamSi , the upper arrival curvēαu
i (∆) and

the lower arrival curveᾱl
i (∆) can be obtained by applying

Real-Time Calculus. Note that an arrival curveᾱi(∆) speci-
fies the (upper-bounded or lower-bounded) number of events
of event streamSi for every time interval∆ while a service
curve β(∆) specifies the (upper-bounded or lower-bounded)
available amount of time for execution for every time interval
∆. Therefore, the arrival curvēαu

i (∆) (respectively,ᾱl
i (∆))

has to be transformed to the arrival curveαu
i (∆) (respectively,

αl
i (∆)) to indicate the amount of computation time required

for the arrived events in intervals. If the execution timewi

associated to an event in streamSi is bounded bycl
i ≤wi ≤ cu

i
then the transformation can be done byαu

i = cu
i ᾱu

i , αl
i = cl

i ᾱl
i

and back byᾱu
i = ⌈αu/cl

i⌉, ᾱl
i = ⌊αl/cu

i ⌋. In the case of
variable workloads, workload curves [15] can be applied.
Moreover, to satisfy the real-time or QoS constraint of event
streamSi , the response time of an event in event streamSi

must be no more than its specified relative deadlineDi , where
the response time of an event is its finishing time minus the
arrival time of the event.

c) Scheduling Policies:For scheduling event streams,
we consider the fixed-priority (FP) scheduling and the
earliest-deadline-first (EDF) scheduling. For FP scheduling,
event streams are prioritized a priori. Once an event of an
event stream arrives to the system, the priority of the event
is set to the pre-defined priority of the event stream. For
EDF scheduling, the highest priority is given to the event
with the earliest deadline. For both FP and EDF scheduling,
the system executes the incomplete event with the highest
priority. If there are more than one event with the highest
priority, we break ties by applying the first-come-first-serve
(FCFS) strategy. Therefore, events in the same event stream
will be executed in the FCFS manner.

d) Periodic Power Management and Problem Defini-
tion: This paper explores how to efficiently and effectively
minimize the energy consumption to serve a set of event

periodic power management (PPM)

Ton To f f Ton To f f Ton To f f

active/
standby sleep active/

standby sleep active/
standby sleep

S1
S2
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..
.
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..
.

Scheduling policy
EDF or FP

β()

Fig. 3. The abstract model of the periodic power management problem.

streamsS under the real-time or QoS requirements. Of
course, one could determine when to transit between modes
to reduce the energy consumption dynamically, but the
computational overhead is quite significant since the decision
must be done by evaluating the arrival curves dynamically.

In this paper, we proposeperiodic power management
schemes(PPM), abstractly illustrated in Fig. 3, in which the
power management is done by analyzing the arrival curves
of event streamsS statically. Specifically, the periodic power
management schemes first decide the periodT = Ton+To f f

for power management, then switch the system to the standby
mode forTon time units, following byTo f f time units in the
sleep mode. Therefore, given a time intervalL, whereL≫ T
and L

T is an integer, suppose thatγi(L) is the number of events
of event streamSi served in intervalL. If all the served
events finish in time intervalL, the energy consumption
E(L, Ton, To f f ) by applying the PPM is

E(L,Ton,To f f) =
L

Ton+To f f
(Esw,on+Esw,sleep)

+
L ·Ton

Ton+To f f
Ps+

L ·To f f

Ton+To f f
Pσ

+ ∑
Si∈S

ci · γi(L)(Pa−Ps)

=
L ·Esw

Ton+To f f
+

L ·Ton(Ps−Pσ)

Ton+To f f

+L ·Pσ + ∑
Si∈S

ci · γi(L)(Pa−Ps)

whereEsw is Esw,on+Esw,sleep for brevity.
As a result, for anL that is sufficiently large, without

changing the scheduling policy, the minimization of energy
consumptionE(L,Ton,To f f) is to find Ton andTo f f such that
the average idle power consumption P(Ton,To f f)

P(Ton,To f f ) =
Esw+Ton(Ps−Pσ)

Ton+To f f
(1)

is minimized. We now define the PPM problem studied in
this paper as follows:

Given a set of event streamsS under the real-time
or QoS requirements, the objective of the studied
problem is to find a periodic power management
characterized by Ton and To f f that minimizes the
average standby power consumption, in which the
response time of any event of event stream Si in S

must be no more than Di .



III. O NE EVENT STREAM

As we are interested in one event stream in this section,
suppose thatS1 is the given event stream. For event streams
described by Real-Time Calculus, one can apply Real-Time
Interface [21] to verify whether a system can provide guar-
antee output serviceβG(∆). Correspondingly, to guarantee
that all events in an event stream can be processed while
respecting all timing constraints, the event stream demands
a service boundβA(∆). To satisfy the required deadlineD1,
βA(∆) can be computed asβA(∆) = αu

1(∆−D1). To check the
schedulability of event streamS1 in the system, the following
predicate has to be true:

βG(∆)≥ βA(∆), ∀∆≥ 0 (2)

For PPM with specifiedTon andTo f f , the guarantee service
of the system can be refined as:

βG(∆) = max
(⌊ ∆

Ton+To f f

⌋

·Ton,

∆−
⌈ ∆

Ton+To f f

⌉

·To f f

)

(3)

For the rest of this section, we are going to present our
schemes to find the pair(Ton,To f f ) ∈ R

+×R
+ to minimize

the average idle power consumption such that the service
constraintβG(∆) in (2) is satisfied, and, hence, all events
in streamS1 have response time shorter than the timing
constraintD1.

Reviewing the formulation of the average idle power con-
sumptionP(Ton,To f f) = Esw+Ton(Ps−Pσ)

Ton+To f f
, there are two cases.

(1) If Esw
Ps−Pδ

≥ To f f , we know thatP(Ton,To f f ) is minimized

when Ton is set to∞. (2) If Esw
Ps−Pδ

< To f f , the minimalTon

under the service constraintβG(∆) minimizes the average
idle power consumptionP(Ton,To f f ). In this sense,Esw

Ps−Pδ
, can

be seen as the break-even time of the system. Our approaches
proposed in this paper are based on (1) the finding of the
minimalTon under the service constraintβG(∆), provided that
To f f is given, and (2) the exploration of the bestTo f f . One
could also derive solutions in another direction by searching
the bestTo f f for a specifiedTon along with the exploration
on Ton, but the procedure would be more complicated.

A. Finding the Minimal Ton Optimally and Approximately

By the service guarantee curveβG in (3), the service
demand curveβA = αu

1(∆−D1), and the schedulability def-
inition in (2), the minimalTon to fulfil the schedulability
requirement in terms of a givenTo f f can be defined as:

Tmin
on = min

{

Ton : βG(∆)≥ βA(∆), ∀∆≥ 0
}

. (4)

To our best knowledge, there is no explicit form to
computeTmin

on . Furthermore, due to the complex shape of
the arrival curves, exhaustive testing of (2) is the only way
to determine the minimum from all possibleTon.

Instead of calculating the exactTmin
on , we propose an

alternative approach, namely bounded-delay approximation,
to find an approximated minimal̃Ton. The bounded-delay

αu
1(∆)

βA(∆) = αu
1(∆−D1)

βA′ = ρ(∆−To f f )T̃o f f

T̃on

D1

∆
Fig. 4. An example for the bounded delay approximation, in which only
part of the upper arrival curveαu

1(∆) is presented for simplicity.

approach, on one hand, can reduce the computational com-
plexity of finding the minimalT̃on, and, on the other hand,
can provide means to solve the PPM problem efficiently.

The basic idea of the proposed approach is to com-
pute a minimalbounded-delay functionβA′(∆), then derive
the minimal Ton based onβA′ . A bounded-delay function
bdf(∆,ρ,To f f ), defined by the slopeρ and the bounded-delay
To f f for interval length∆, is max{0,ρ · (∆−To f f)}.

For a given bounded-delay function with slopeρ and
bounded-delayTo f f , we can construct a PPM with

T̃on =
ρ ·To f f

1−ρ
(5)

such that the resulting service curve of the PPM is no
less than the minimalbdf(∆,ρ,To f f ) for any ∆ ≥ 0. Fig. 4
illustrates an example to derivẽTon. From above definitions,
we can have the following lemma.

Lemma 1:For specifiedTo f f > 0 and 0< ρ≤ 1:
(1) If bdf(∆,ρ,To f f) ≥ αu

1(∆−D1), then, for anyρ′ > ρ,
bdf(∆,ρ′,To f f )≥ αu

1(∆−D1).
(2) If bdf(∆,ρ,To f f) < αu

1(∆−D1), then, for anyρ′ < ρ,
bdf(∆,ρ′,To f f ) < αu

1(∆−D1).
Proof: This is simply based on the construction of the

bounded delay function.
By (5) and Lemma 1, finding the minimumρ, namely

ρmin,To f f , under the constraint of the service demandβA,
is equivalent to the derivation of the minimal̃Ton in the
bounded-delay approximation, where

ρmin,To f f = inf{ρ : bdf(∆,ρ,To f f)≥ αu
1(∆−D1),∀∆≥ 0}.

Now we can formally definẽTon as following.
Definition 1: The minimal Ton acquired from the

bounded-delay approximation is a function ofTo f f :

T̃on =
To f f ·ρmin,To f f

1−ρmin,To f f

def
= f (To f f) (6)

To computeρmin,To f f , based on Lemma 1, we can simply
apply binary search ofρ in the range of[0,1]. Suppose that
there aren possible values ofρ, the number of exploration
required to deriveρmin,To f f is O(logn). Compared to the
search of optimalTmin

on with respect to a givenTo f f in (4)
with O(n) explorations of possible combinations, the binary
search greatly improves the running time, since verifying
whetherβG(∆)≥ βA(∆) for all ∆≥ 0 is time-consuming.



Moreover, the derived̃Ton has certain nice property in the
following lemma, which will be used to improve the time
complexity for searching the optimal PPM.

Lemma 2:Given aβA, the functionf (To f f) defined in (6)

is strictly increasing and
To f f

f (To f f )
>

(1+ε)To f f
f ((1+ε)To f f )

for any ε > 0.
Proof: From the definition off , one hasρmin,To f f <

ρmin,(1+ε)To f f
and therebyf (To f f) < f ((1+ ε)To f f ), which

proves the property for strict increase. Becauseρmin,To f f <

ρmin,(1+ε)To f f
, we can derive 1

1+
To f f

f (To f f )

< 1

1+
(1+ε)To f f

f ((1+ε)To f f )

, then,

To f f
f (To f f )

>
(1+ε)To f f

f ((1+ε)To f f )
.

B. Feasible Region of To f f

Before presenting how to search the optimalTo f f , we will
first discuss about the feasible region ofTo f f . Intuitively, if
To f f is smaller than the break-even time, i.e.,Esw

Ps−Pδ
, turning

the system to the sleep mode consumes more energy than the
energy overheadEsw for mode switching. The sleep mode
thereby introduces additional energy consumption. There-
fore, for searching the optimalTo f f , the region

[

0, Esw
Ps−Pδ

]

can be safely discarded. Moreover, asTo f f must also satisfy
the timing overhead for mode switches, we also know that
To f f must be no less thantsw, wheretsw = tsw,sleep+ tsw,on.

There is also an upper bound forTo f f . On one hand,To f f

should be smaller thanD1−c1. Otherwise, no event can be
finished before its deadline. On the other hand, as the system
provides no service when it is off, that imposes a maximum
serviceβG

⊤(∆) = max{0, ∆−To f f}. According to Real-Time
Interface in (2), we know that predicate

βG
⊤(∆) = max{0, ∆−To f f} ≥ βA

1(∆) = α1(∆−D1) (7)

has to be true to satisfy the timing constraint. By inverting
(7), we can compute the maximumTo f f as

Tmax
o f f = max

{

To f f : βG
⊤(∆)≥ βA

1(∆), ∀∆≥ 0
}

. (8)

In summary, to find an optimal PPM, the feasible region of
To f f ∈ [T l

o f f , Tr
o f f ] can be bounded as follows:

T l
o f f = max

{

tsw,
Esw

PS−Pδ

}

(9)

Tr
o f f = min

{

D1−c1, Tmax
o f f

}

(10)

C. Optimal and Approximated PPMs

We now present how to apply the results in Sections III-
A and III-B for deriving Ton and To f f to minimize the
average idle power consumptionP(Ton,To f f). Depending on
the bounded-delay approximation and the derivation of min-
imum Ton with respect to a givenTo f f , we will present two
approaches, namely BDA and OPT, to deriveTon andTo f f . To
show the difference between these two schemes, for a given
To f f , Fig. 5 presents an example for illustrating the irregular
pattern of the minimum average idle power consumption
by solving (4) and the convexity of the average idle power
consumption by applying bounded-delay approximation.

Approach OPT As shown in Fig. 5, the minimal
average idle power consumption in the feasible region ofTo f f
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Fig. 5. The relation of the minimal average idle power consumption and
To f f for the OPT and BDA approaches. The stream and device areS1 and
IBM Microdrive in Table I and II of Section V, respectively.

is irregular. Therefore, to find the optimal solution, we have
to explore all the feasible solution space ofTo f f . Suppose that
there arem values ofTo f f within the region[T l

o f f , Tr
o f f ], the

complexity of the overall algorithm thereby isO(n·m). The
pseudo-code of the OPT scheme is shown in Algorithm 1.

Algorithm 1 OPT

Input: α1, D1, T l
o f f , Tr

o f f , ε, Pmin = ∞
Output: T ′on, T ′o f f

1: for To f f = T l
o f f to Tr

o f f stepε do
2: exhaustively findTmin

on by testing (4)
3: if P(Tmin

on ,To f f ) < Pmin then
4: T ′on← Tmin

on ; T ′o f f ← To f f

5: Pmin← P(Tmin
on ,To f f )

6: end if
7: end for

Approach BDA Before presenting the BDA algo-
rithm, we first show the convexity of the objective function
P(Ton, To f f ) acquired from the application of bounded-delay
approximatedT̃on defined in Def. 1.

Theorem 1:Using the bounded-delay algorithm approach
to computeT̃on = f (To f f) as depicted in (6),P(T̃on, To f f ) =
P( f (To f f),To f f) is a convex function.

Proof: The objective functionP(T̃on, To f f ) can be split
into two parts: Esw

Ton+To f f
and (Ps + Pδ) ·

Ton
Ton+To f f

. For the

first part Esw
Ton+To f f

= Esw
f (To f f )+To f f

, f (To f f) + To f f is strictly

increasing according to Lemma 2. ThereforeEsw
Ton+To f f

is a
monotonically decreasing convex function. For the second
part (Ps+ Pδ) ·

Ton
Ton+To f f

=
Ps+Pδ

1+
To f f

f (To f f )

, according to Lemma 2,

we know that 1

1+
To f f

f (To f f )

is monotonically increasing and is a

convex function as well. As a linear combination of convex
functions is a still a convex function, the original function
P(T̃on, To f f ) is a convex function ofTo f f .

Based on the result from Thm. 1, exhaustive search for
every To f f is not necessary. For instance, the complexity is
reduced toO(logn· logm) by applying a bisection search for
the feasible region ofTo f f . The pseudo code of the algorithm
is described in the Algorithm 2.



Algorithm 2 BDA

Input: α1, D1, T l
o f f , Tr

o f f , ε
Output: T ′on, T ′o f f

1: if Tr
o f f −T l

o f f < ε then
2: if P

(

T l
o f f , f (T l

o f f)
)

< P
(

Tr
o f f , f (Tr

o f f)
)

then
3: return{T ′on← f (T l

o f f); T ′o f f ← T l
o f f}

4: else
5: return{T ′on← f (Tr

o f f); T ′o f f ← Tr
o f f}

6: end if
7: end if
8: ρl ← P′(T l

o f f , f (T l
o f f)) ⊲ P′ is the derivative ofP with

respective toTo f f

9: ρm← P′
(

T l
o f f+Tr

o f f
2 , f (

T l
o f f+Tr

o f f
2 )

)

10: if ρl ·ρm > 0 then
11: T l

o f f ← Tm
o f f

12: else
13: Tr

o f f ← Tm
o f f

14: end if
15: recursively call BDA with the newT l

o f f andTr
o f f

IV. M ULTIPLE EVENT STREAMS

This section presents how to cope with multiple event
streams by extending the bounded delay approximation
(BDA) scheme and the optimal periodic power management
(OPT) scheme presented in Section III. Due to space limi-
tation, we will focus our discussions on fixed priority (FP)
scheduling, and at the end of this section, we will briefly
show how to handle earliest deadline first (EDF) scheduling.

Suppose that there areN event streams inS , whereN ≥
2. For FP scheduling, without loss of generality, we order
the event streamsS1,S2, . . . ,SN according to their priorities,
where the priority of event streamSi is higher than that of
Sk whenk > i. Suppose thatβl

1(∆) is the lower service curve
of the system. By Real-Time Calculus [20], we know that
the remaining lower service curveβ′1(∆) after serving event
streamS1 is sup0≤λ≤∆{βl

1(λ)−αu(λ)}. In FP scheduling,
the remaining service will be used to serve the other event
streams, in whichβ′1(∆) is the available service curve of
event streamS2. For example, as illustrated in Fig. 6 for
three event streams, for FP scheduling, the schedulability
analysis can be decomposed as three components by using
the remaining service curve left by higher priority streams.

S1

βl
1

S2

βl
2

S3

βl
3

α1 α2 α3

βA
3βA

2βA
1

Fig. 6. An example for fixed-priority scheduling

Therefore, to guarantee the satisfaction of timing con-
straint for event streamSN, as shown in Section III, the
service provided to streamSN must be at leastβA

N(∆) =
αu

N(∆−DN). This also implies that the remaining service
curve after serving streamsS1,S2, . . . ,SN−1 must be at least
βA

N(∆). To derive the service boundβA
1(∆), we have to

TABLE I

EVENT STREAM SETTING ACCORDING TO[23].

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

p (msec) 198 102 283 354 239 194 148 114 313 119
j (msec) 387 70 269 387 222 260 91 13 302 187
d (msec) 48 45 58 17 65 32 78 - 86 89
c (msec) 12 7 7 11 8 5 13 14 5 6

TABLE II

POWER PROFILES FOR DEVICES ACCORDING TO[6].

Device Name Pa (Watt) Ps (Watt) Pσ (Watt) tsw (sec) Esw (mJoule)
Realtek Ethernet 0.19 0.125 0.085 0.01 0.8

Maxstream 0.75 0.1 0.05 0.04 7.6
IBM Microdrive 1.3 0.5 0.1 0.012 9.6

SST Flash 0.125 0.05 0.001 0.001 0.098

compute the service boundsβA
N−1(∆),βA

N−2(∆), . . . ,βA
2(∆),

sequentially. Suppose thatβA
k (∆) has been derived, we can

apply the following equation to deriveβ♯
k−1(∆) so that the

remaining service curve is guaranteed to be no less than
βA

k (∆) if βl
k−1(∆) is no less thanβ♯

k−1(∆):

β♯
k−1(∆) = βA

k (∆−λ)+αu
k−1(∆−λ) (11)

whereλ = sup{τ : βA
k (∆− τ) = βA

k (∆)}.

To guarantee the timing constraint of event streamSk−1, we
also know thatβl

k−1(∆) must be no less thanαu
k−1(∆−Dk−1).

Therefore, we know that

βA
k−1(∆) = max{β♯

k−1(∆),αu
k−1(∆−Dk−1)}. (12)

By applying (12) fork = N− 1,N− 2, . . . ,2, we can then
derive the lower service curve, i.e.,βA

1(∆), that the system
must provide for satisfying the timing constraints. Then, the
bounded delay approximation (BDA) scheme and the optimal
periodic power management (OPT) scheme can be applied
to minimize the average idle power consumptionP(Ton,To f f )
by settingβA(∆) to βA

1(∆) derived above.
For EDF scheduling, as shown in [22], the service bound

βA(∆) is simply ∑Si∈S αu
i (∆−Di). For FCFS, the service

bound βA(∆) is ∑Si∈S αu
i (∆ − Dmin), where Dmin is the

minimum relative deadline of the event streams inS .

V. PERFORMANCEEVALUATIONS

This section provides simulation results for the PPM
schemes derived from the proposed OPT and BDA ap-
proaches. All results are obtained from a simulation host
with Intel 1.7GHz processor and 1 GB RAM.

Simulation Setup We take the stream set studied in [8],
[23] for our case study. Table I specifies the parameters for
this 10-stream set. A streamSi is specified by its period
pi , jitter j i , minimal inter-arrival distancedi , and worst case
execution timeci , as defined in Section II. The relative
deadline Di of Si is defined asDi = χ ∗ pi and varies
according to thedeadline factorχ. In our simulations, we
adopt the power profiles for four devices in [6], presented in
Table II.

We simulate scenarios for both one stream and multiple
streams. Due to space limitation, we only report random sub-
sets of the 10-stream set for multiple streams. For instance,
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Fig. 7. Normalized average idle power of the PPM schemes dervide by
the BDA approach for single stream scenarios withχ = 1.6.
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Fig. 8. Normalized average idle power of PPM schemes derived bythe
BDA approach for multiple-stream scenarios withχ = 2 by applying EDF
and FP scheduling.

S(3,4) represents a scenario considering only streamsS3

and S4 in Table I. In the case of fixed-priority scheduling
for multiple streams, the priority corresponds to the stream
index, e.g.,S3 has higher priority thanS4 for S(3,4).

Since all PPM schemes derived from both OPT and BDA
algorithms have the same energy consumption for event
processing, we compare the average idle power, defined in
(1). We also report the computation time required to derive
PPM schemes for both BDA and OPT approaches.

Simulation Results First, we show the effectiveness of
the BDA approach. Fig. 7 and Fig. 8 show thenormalized
average idle powerof the PPM schemes derived by the BDA
approach with respect to those by the OPT approach for
single and multiple stream scenarios, respectively, subjected
to four devices and different scheduling. As shown in these
two figures, the PPM scheme derived by BDA approach
reasonably approximates the optimal scheme obtained from
the OPT approach with respect to different subset of the
stream set, different devices, and different scheduling poli-
cies. In general, the BDA approach derives better schemes for
multiple-stream scenarios than for single-stream scenarios.
The reason is that with more streams involved, the result
demand curve is smoothen by the individual streams, re-
sulting in a closer match of the bounded delay function.
The PPM scheme derived from the bounded delay function
approximates the optimum better accordingly.

We also investigate how the average idle power changes
as the relative deadline of event streams varies. As our
PPM schemes aretime-driven, we use an event-driven (ED)
scheme as a reference, where the device is turned to the
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Fig. 9. Average idle power of streamS8 for the IBM Microdrive.
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Fig. 10. Average idle power of the 10-stream scenario for theIBM
Microdrive with EDF scheduling.

sleep mode when there is no event to be processed, and
is awaken for event processing whenever an event arrives.
Fig. 9 and Fig. 10 depict results for single and multiple
stream scenarios, respectively. As shown in these figures,
the BDA approach effectively approximates the optimum.
We also observe that the average idle power decreases as
the relative deadline increases for both single and multiple
stream cases. The reason is that for longer relative deadlines,
more arrived events can be accumulated for each activation
of the device. Another observation is that the ED scheme is
effective for one stream scenario and short relative deadlines.
As more streams are involved and the relative deadline in-
creases, our dervied PPM schemes considerably outperform
the ED scheme, due to the amount of mode-switch operations
reduced.

Second, we demonstrate the efficiency for deriving a
minimal PPM scheme for both BDA and OPT approaches
by reporting the computation expense. Fig. 11 depicts the
computation time for different stream combinations, given
a fixed deadline factor. The BDA approach is about two
orders of magnitude faster than the OPT approach. Fig. 12
shows the relation of computation time and the deadline
factor for the 10-stream scenario. As the figure shown,
the computation time for the OPT approach increases as
the relative deadline increases, while the time remains in
the same scale for the BDA approach. Note that the OPT
approach can be much slower for a smaller granularity ofε in
Algorithm. 1. We can conclude the BDA approach efficiently
derives approximation solutions.

VI. CONCLUSION

This paper explores how to apply dynamic power manage-
ment to reduce the energy consumption under the real-time
or quality of service constraints. Based on off-line analysis,
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Fig. 11. Computation time of different scenarios for the IBM Microdrive
with χ = 2.
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our proposed periodic power management has light run-
time overhead and is very suitable for devices that have
limited power on computation, such as micro-control units
(MCU), that. We consider systems (or devices) with active,
standby, and sleep modes with different power consumptions.
For scheduling one event stream under the real-time or
QoS constraints, we develop an approach to derive optimal
solutions and another to derive approximated solutions with
lower complexity. Extensions to multiple events streams are
also presented by applying the Modular Performance Analy-
sis [24]. To demonstrate the performance of the proposed
schemes, several case studies are explored, in which the
results reveal the effectiveness of our approaches.
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