
Übung Echtzeitsysteme WS 2014/15 - Sheet 9

Übung Echtzeitsysteme WS 2014 / 2015
Philipp Heise

Exercise 0 Rate-Monotonic Scheduling

Given a fixed number N of periodic tasks we want to implement a rate monotonic scheduler.

• Have a look at the task.h headerfile that contains the basic task structure and some utility
functions.

• In order to schedule our tasks we need to find the hyper-period h of the tasks. The
hyper-period is given by the least common multiple lcm() of the task periods pi:

h = lcm(p0, . . . , pN−1). (1)

The least common multiple of two positive numbers a, b can be calculated using the greatest
common divisor gcd:

lcm(a, b) =
a · b

gcd(a, b)
. (2)

In the header util.h an implementation of the gcd can be found. Implement a function
task hyperperiod that takes a task array (pointer) and the number of tasks and returns
the hyperperiod. Use the following rules for the calculation of the lcm:

lcm(a) = a (3)

lcm(a, b, c) = lcm(a, lcm(b, c)). (4)

• Given the hyper-period h and the N tasks we can start implementing our rate monotonic
scheduler for one hyperperiod. In the file rmscheduler.h you find some skeleton code and
some hints for the implementation. The function task sort rate sorts the tasks according
to the period in ascending order. Remember that for the rate monotonic scheduler always
the task with the highest rate ri = 1

pi
is selected. After a task has finished execution it can

not be selected for scheduling until it becomes ready again at its period time. If a running
task gets interrupted it still needs to execute for its remaining time at some point. Check
if the schedule is feasible and the deadlines are met (here the deadline is the period).

• Use the following N = 3 tasks T1 = (4, 1), T2 = (5, 2), T3 = (20, 5) with a hyper-period of
20 to test your implementation together with the example schedule in the figure below.

1



Übung Echtzeitsysteme WS 2014/15 - Sheet 9

2


