
Interrupts vs. Polling

 Constantly reading a memory location, in
order receive updates of an input value

10/19/2015 Kai.Huang@tum 2

Polling

#include "system.h"

#include "io.h"

int main() {

unsigned char key;

unsigned char val = 0x01;

IOWR(LED_BASE, 0, val);

while(1) {

key=IORD(KEY_BASE,0);

if(key == 0x02){

// key number 1 pressed

// slide the bit one position to the left

val = val << 1 | val >> 7;

// update the LEDs

IOWR(LED_BASE, 0, val);

// wait until the key is released

while(IORD(KEY_BASE,0) != 0x03)){}

}

}

return 0;

}

Polling

Polling

 “Normal” microcontroller flow of control

o Single process

o Main routine / main loop

o Normal control flow statements (if, while, for, etc.)

 Asynchronous, important events

o May need to be handled immediately

o Realtime requirements

o Interrupt normal flow of control

10/19/2015 Kai.Huang@tum 3

Interrupts

 Processor interrupts (preempts) the current flow of control

 Time spent in interrupt handlers should be kept as short as
possible

 Microcontroller offers interrupts for various conditions

o Not all are useful all the time: enable required interrupts

o Some critical may require atomic execution (no
interruptions guaranteed)

o Disable / re-enable interrupts around critical section

10/19/2015 Kai.Huang@tum 4

Interrupt Handling

10/19/2015 Kai.Huang@tum 5

In details

Task execution Task execution

Interrupt signal

ISR

 Saving context: Push all temporary variables
(like program counter) into stack

10/19/2015 Kai.Huang@tum 6

In details

Task execution Task execution

Interrupt signal

Saving context

ISR

 Construct context: Pull all temporary
variables (like program counter) out of stack

10/19/2015 Kai.Huang@tum 7

In details

Task execution Task execution

Interrupt signal

Saving context

ISR

Construct context

 Timers: System “ticks”, periodic tasks

 Communications

o Ethernet

o USB

o Serial

 Periphery

o E.g. ADC (Conversion complete)

o Memory management

 Software

Software interrupts (trap instructions) / illegal instructions

 Reset / Power-On

10/19/2015 Kai.Huang@tum 8

Sources of Interrupts

 What happens if a interrupt occurs during another interrupt is
handled?

o E.g. Timer ticks while Ethernet packet is processed

o Priorities: Some interrupts are more important than other

o Hierarchy of interrupts

• Only more important interrupts may preempt lesser
interrupts

• Usually: lower priority is more important

• Interrupts on same priority level do not preempt

o Not immediately handled interrupts may be stored or may
be lost

• Depends if interrupt condition persists

10/19/2015 Kai.Huang@tum 9

Interrupt Priorities

 Latency

o Time passed between occurrence of event and handling

o Interrupt is generated and source is serviced

 Interrupt latency

o Interrupts tightly integrated into processor

o Low latency

o Complete current instruction, save registers and jump to
handler

o Measured in instruction cycles

10/19/2015 Kai.Huang@tum 10

Interrupt Latency

 Polling:

o Continuously poll IOs for change of value

o Pro:

• Short latencies (if low #IOs)

• Events do not block the normal program exec.

o Cons:

• Most polls are unneeded – value did not change

• High CPU usage

• Reaction time depends on #IOs

 Interrupt

o Normal execution is interrupted when event occurs

o Pro:
• Processor resources are only used when necessary

o Cons:
• Program execution is interrupted in a non-deterministic manner

10/19/2015 Kai.Huang@tum 11

Interrupts vs. Polling

 Event handler for interrupt

 Special, user-defined function for handling the
interrupt

10/19/2015 Kai.Huang@tum 12

Interrupt Service Routine (ISR)

 Edge-triggered

o Falling Edge – when signal value decreases

o Rising Edge – when signal value increases

o Either Edge

 Level-triggered

o each instance, when signal is above or below a
certain threshold

 IRQs can be configured from within SOPC
Builder

10/19/2015 Kai.Huang@tum 13

Trigger for external interrupts

 Initialization

 Enable the interrupt for the specific input
IOWR_ALTERA_AVALON_PIO_IRQ_MASK(<BASE>, <MASK>);

 Set the edge capability
IOWR_ALTERA_AVALON_PIO_EDGE_CAP(<BASE>, <VAL>)

 Register handler
alt_ic_isr_regsiter(<IRQ_Controller_ID>, <IRQ>,

<isr_function>, <isr_context>, <flags>)

10/19/2015 Kai.Huang@tum 14

Altera Interrupts

 Try out and understand the Interrupt based
KEY-LED package

 Your code need to print “No Key is pressed!“
when no key was pressed. At the same time,
you code need to reponse the key press event
and turn on and off the led alternately.

 Tell what you see and explain it.

10/19/2015 Kai.Huang@tum 15

Tasks

