

Introduction to H-Bridge

How does a motor turn?

7/26/2015

 If you want to change the direction of the rotation, change the direction of current flow

Kai.Huang@tum

How much current does a motor need?

- Your nano board works @ 5 V, 0.5 Ams AT MOST
- Depending on the application, motors need huge amount of voltage and current

Kai.Huang@tum

3

7/26/2015

How much current does a motor need?

- Can I connect my Nano board to 25K Volts?
- Yes you can
 - Please inform me before doing it, I will run away from you as far as possible

Kai.Huang@tum

4

- You should use electric switch
 - $\circ \, \text{Relay}$

7/26/2015

 \circ Transistor/h-Bridge

Relay : Electro mechanical switch

- The small current flowing from coil creates electro-magnetic force which attracts the pivoted contact and circuit is closed on the large current side
 - Provides isolation

7/26/2015

Slow reaction due to mechanical motion

H-Bridge

7/26/2015

Drive signal A & B from your Nano board
 O Transistor is an electronic switch
 O What happens if A = 1, B = 1 and V = 25 K?

Kai.Huang@tum

H-Bridge

7/26/2015

7

A & B must be driven by square wave pulses as shown above

Kai.Huang@tum

○ Have you seen such square wave before?

H-Bridge Inverter Basics – Creating AC from DC

H-Bridge Inverter

• Square wave modulation:

Ш

Basic Square Wave Operation (sometimes used for 50 Hz or 60Hz applications)

The Vab = 0 time is not required but can be used to reduce the rms value of V_{load}

Many Loads Have Lagging Current – Consider an Inductor

There must be a provision for voltage and current to have opposite signs with respect to each other

Component: H-bridge Circuit

L298 chip & Circuit

7/26/2015

Driving Mode

Kai.Huang@tum

7/26/2015

Goals

- Forward
- Backward
- Rotate clockwise

7/26/2015

Rotate anticlockwise

Free running (Option)

Kai.Huang@tum

Drive Forward

- All wheels
 - \circ Same speed
 - \circ Rotate forward

Drive Backward

- All wheels
 - \circ Same speed
 - \circ Rotate backward

Rotate Clockwise

- The left wheel

 Same speed
 Rotate clockwise
- The right wheels

 Same speed
 Rotate anticlockwise

Kai.Huang@tum

Rotate Anticlockwise

- Two left wheels

 Same speed
 Rotate anticlockwise
- Tow right wheels

 Same speed
 Rotate clockwise

7/26/2015

Let's dance

7/26/2015

Control application in different modes
 Use timer to switch modes

Kai.Huang@tum

Questions

7/26/2015

Kai.Huang@tum

