

Introduction to Pulse Width Modulation (PWM)

What is PWM

7/26/2015

 Output signal alternates between on and off within specified period.

Kai.Huang@tum

- Control the power received by a device.
- The voltage seen by the load is directly proportional to the source voltage.

What is PWM?

- Depending on the requirement the width of the pulse is modulated (adjusted).
- Duty cycle = $t_{on} / (t_{on} + t_{off})$.

7/26/2015

Why PWM?

Analog voltage control:

7/26/2015

 \odot Voltage can be changed to control the motor speed \odot Can NIOS change voltage ?

Kai.Huang@tum

Why PWM?

7/26/2015

Digital voltage control:

 Can only control '1' and '0'
 X% of maximum analog voltage = X% of duty cycle

Kai.Huang@tum

PWM Control Example

- Disco gate:
 - \circ 100 % open gate = 10 persons per second
 - \circ 50% open gate = 5 persons per second
- Analog control:
 - \circ Open 50 % gate

7/26/2015

- \odot Total how many people can go in 10 seconds?
- Digital control:
 - Open 100 % gate on every odd second (1,3,5,7,9, ..)
 - \circ Total how many people can go in 10 seconds?

Usage of PWM

Motor Control

Intensity of LED

How to generate PWM signal ?

- Software method
 - \circ Using counter
 - Count to 100 in a loop
 - Set the output value to 1 in the beginning of the loop
 - Set the output value to 0 as soon as the counter reaches the value of required duty cycle.

Kai.Huang@tum

8

- Continue the process
- \circ Using interrupt
 - Home work

7/26/2015

Think about the concept

Questions

7/26/2015

Kai.Huang@tum

Your tasks

- Create projects in a usual way using provided SOPCINFO file.
- Type the code in your application project.
- Change duty cycle variable and observe the effect on oscilloscope or LED.
- Using oscilloscope, verify the duty cycle.
 - \odot Is it precise?
 - \circ Is it efficient?

7/26/2015

Software PWM

Output pin:

- GPIO_0[10]
- Using the manual find out the correct pin and observe the resulting PWM on the oscilloscope
- In C program, use the following instructions to change the output
 - IOWR(PWM0_BASE, 0, 0); // set output 0
 - IOWR(PWM0_BASE, 0, 1); // set output 1
- Control LED (optional):

7/26/2015

 \odot Apply the PWM signal to LED, observe the intensity

11

Kai.Huang@tum

You are 25 % engineer ALREADY !

- Start doing things on your own
- Use Google, dictionary to find a solution
- Try hard, do not give up to be an expert engineer
- I am sure, you all are very hard working and intelligent. You can do the job.

Kai.Huang@tum

12

If you have problems call us

7/26/2015

Questions

Kai.Huang@tum

7/26/2015

Hardware PWM IP

- Let us use the NIOS processor as a boss
 - o Does a boss do work by her/himself?
 - The boss only manages/guides/controls the people to do the job
- Highest smartness is required in managing people
 - Do not think that your boss is an idiot ! 🐨
 - Why the bosses have highest salary world-wide?

Career tip:

7/26/2015

 \odot Let only people/machines/tools/computers do your job \odot Learn to manage them to get more salary

14

Kai.Huang@tum

Hardware PWM IP

- Programmable/configurable
- Precise

7/26/2015

A good obedient, the boss can RELAX !!!

Kai.Huang@tum

Hardware PWM IP

- Follow the simple use sequence
 - o Enable
 - Configure
 - \circ Modify
 - o Disable
- Only one function for controlling two PWM signals motor_setting(phase1, duty1, phase2, duty2, period, enable);

Kai.Huang@tum

Hardware PWM IP

7/26/2015

Questions

Kai.Huang@tum

7/26/2015

