

Introduction to the lab course of Snake Robot

Kai Huang, Long Cheng, Zhenshan Bing, Mingchuan Zhou

People

11/2/2015

chengl@in.tum.de

bing@in.tum.de

zhoum@in.tum.de

2

In this semester, you will 'play' with the snake robot with us, doing, learning and having fun!

The aim

- Learn basic skills in the area of mechanical engineering
- Understand the architecture of controlling a snake robot
- If possible, know the basic model of snake robot gait
- Most importantly, obtain the experience of making a real robot by doing it yourself.

11/2/2015

The content

11/2/2015

 Several mechanical components that are used widely in the area

- Arduino
- I²C bus
- Robot Operating System (ROS)
- Solidworks and RobotWorks?

Prerequisite

11/2/2015

- C language programming
- Basic C++ or Python programming
 o For ROS
- Basic electronic knowledge

Of course, interest and enthusiasm are the keys

chengl@in.tum.de

Schedule

One group

 Or three small groups, i.e., mechanical, software, and electronics groups

- Meet at this room every Friday 2:00 pm (except holidays)
- Two presentations

 In the middle of semester
 In the last week

11/2/2015

Expected goal

- Assemble the robot
- Realize the communication between modules
- Develop the interface between computer and the robot

chengl@in.tum.de

7

Control the robot to keep a specific posture

More advanced:

- Control the robot to move forward
- > A GUI to control the robot

Outline of today

- What is a Snake Robot?
 - \circ Examples
 - \odot Advantages of Snake Robots
 - \circ The locomotion of snakes
 - \circ The internal structure of our robot
- Introduce yourself

 Your strength

What is a Snake Robot

 Snake robots are hyper-redundant mechanisms consisting of a series of joints which move via internal shape changes like a snake.

Hyper-redundant: many degree of freedom

chengl@in.tum.de

Movement: internal shape changes

What is a Snake Robot

Hyper-redundant

a series of joints

moves via internal shape changes

Examples

The snake robot *ACM R5*

The snake robot *Unified Snake*

The snake robot **S5**

Advantages of Snake Robots

Traversability in irregular environments

chengl@in.tum.de

- Many degree of freedom
- Obstacle exploitation
- Obstacle avoidance

Advantages of Snake Robots

Snake robot obstacle aided locomotion

11/2/2015

Unified Snake climbs a tree

The locomotion of snakes

 Four most common types of biological snake locomotion

- Lateral Undulation
- \circ Concertina Locomotion
- \circ Rectilinear Crawling
- \circ Sidewinding

The locomotion of snakes

Lateral Undulation

Rectilinear Crawling

11/2/2015

Concertina Locomotion

Sidewinding

The composition of snake robots

- In general, several aspects should be considered while making a snake robot.
- Mechanical design
- Electronics
- Control
- Communication

11/2/2015

Software

The state of our robot

11/2/2015

Currently, we have the components for 6 modules and only 1 module is roughly assembled.

The modules connect with each other in the manner that the axis turns 90 degrees every module such that various movement forms can be achieved.

The internal structure

Ì

וון

The internal structure

chengl@in.tum.de

11/2/2015

- Magnetic rotary encoder used for measuring the joint angle
- Arduino nano micro-controller to control the servo, sample angle data and communicate with the master board.

Introduce Yourself

11/2/2015

chengl@in.tum.de

