

Introduction to Pulse Width Modulation (PWM)

What is PWM?

- Output signal alternates between on and off within specified period.
- Control the power received by a device.
- The voltage seen by the load is directly proportional to the source voltage.

 Depending on the requirement the width of the pulse is modulated (adjusted).

3

• Duty cycle = $t_{on} / (t_{on} + t_{off})$.

Why PWM?

- Analog voltage control:
 - \odot Voltage can be changed to control the motor speed \odot Can NIOS change voltage ?

Δ

Why PWM?

10/24/2016

Digital voltage control:

 Can only control '1' and '0'
 X% of maximum analog voltage = X% of duty cycle

PWM Control Example

Disco gate:

0 100 % open gate = 10 persons per second

 \circ 50% open gate = 5 persons per second

Analog control:

 \odot Open 50 % gate

 \odot Total how many people can go in 10 seconds?

Digital control:

• Open 100 % gate on every odd second (1,3,5,7,9, ..)

 \odot Total how many people can go in 10 seconds?

Usage of PWM

Motor Control

Intensity of LED

How to generate PWM signal?

- Software method
 - \circ Using counter
 - Count to 100 in a loop
 - Set the output value to 1 in the beginning of the loop
 - Set the output value to 0 as soon as the counter reaches the value of required duty cycle.
 - Continue the process
 - \circ Using interrupt
 - Home work
 - Think about the concept

Your tasks

- Create projects in a usual way using provided SOPCINFO file.
- Type the code in your application project.
- Change duty cycle variable and observe the effect on oscilloscope or LED.

9

- Using oscilloscope, verify the duty cycle.
 - \odot Is it precise?
 - \circ Is it efficient?

Software PWM

- Output pin:
 - o GPIO_0[0] ==> find this pin in the user manual
 - Using the manual find out the correct pin and observe the resulting PWM on the oscilloscope
 - In C program, use the following instructions to change the output
 - IOWR(**PIO_0_BASE**, 0, 0); // set output 0
 - IOWR(**PIO_0_BASE**, 0, 1); // set output 1
- Control LED (optional):

 \odot Apply the PWM signal to LED, observe the intensity

Questions

Hardware PWM IP

- Programmable/configurable
- Precise

10/24/2016

Hardware PWM IP

- Follow the simple use sequence
 - o Enable
 - Configure
 - \circ Modify
 - o Disable

10/24/2016

 Only one function for controlling two PWM signals motor_setting(phase1, duty1, phase2, duty2, period, enable);

14

Questions

10/24/2016

