Solving Complex Trajectory Planning Problems using Mixed-Integer Programming

Christian Pek

Technische Universität München

July 07, 2017

Motivation

• How to determine the optimal overtaking trajectory?

Figure: Non-convex optimization problem. Figure taken from [Schulz, 2017].

Topic

- Mixed-Integer Programming:
 - Allows one to solve non-convex optimization problems
 - Integer variables can be used to toggle certain constraints on/off
 - Efficient solving strategies exist

Topic

- Mixed-Integer Programming:
 - Allows one to solve non-convex optimization problems
 - Integer variables can be used to toggle certain constraints on/off
 - Efficient solving strategies exist
- Your task:
 - Get familiar with mixed-integer programming (MIP) and its solving strategies
 - Literature review on trajectory planning problems which use MIP
 - Describe MIP and its advantages/disadvantages
 - How is MIP used in trajectory planning literature?

Topic

- Mixed-Integer Programming:
 - Allows one to solve non-convex optimization problems
 - Integer variables can be used to toggle certain constraints on/off
 - Efficient solving strategies exist
- Your task:
 - Get familiar with mixed-integer programming (MIP) and its solving strategies
 - Literature review on trajectory planning problems which use MIP
 - Describe MIP and its advantages/disadvantages
 - How is MIP used in trajectory planning literature?
- ⇒ Any questions? Interested? Feel free to contact me! christian.pek@tum.de